No Cover Image

Journal article 75 views

High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy

Makhayeni Mtunzi Orcid Logo, Hui Jia Orcid Logo, Yaonan Hou Orcid Logo, Xueying Yu, Haotian Zeng, Junjie Yang, Xingzhao Yan, Ilias Skandalos, Huiwen Deng, Jae-Seong Park, Wei Li Orcid Logo, Ang Li, Khalil El Hajraoui, Quentin Ramasse, Frederic Gardes, Mingchu Tang, Siming Chen Orcid Logo, Alwyn Seeds, Huiyun Liu Orcid Logo

Journal of Physics D: Applied Physics, Volume: 57, Issue: 25, Start page: 255101

Swansea University Author: Yaonan Hou Orcid Logo

  • 67691.VoR.pdf

    PDF | Version of Record

    Released under the terms of the Creative Commons Attribution 4.0 licence.

    Download (3.76MB)

Abstract

High-quality and low-defect-density germanium (Ge) buffer layers on silicon (Si) substrates have long been developed for group IV and III–V devices by suppressing defect propagation during epitaxial growth. This is a crucial step for the development of highly efficient photonic devices on Si substra...

Full description

Published in: Journal of Physics D: Applied Physics
ISSN: 0022-3727 1361-6463
Published: IOP Publishing 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa67691
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2024-09-25T19:10:47Z
last_indexed 2024-09-25T19:10:47Z
id cronfa67691
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67691</id><entry>2024-09-14</entry><title>High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy</title><swanseaauthors><author><sid>113975f710084997abdb26ad5fa03e8e</sid><ORCID>0000-0001-9461-3841</ORCID><firstname>Yaonan</firstname><surname>Hou</surname><name>Yaonan Hou</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-14</date><deptcode>ACEM</deptcode><abstract>High-quality and low-defect-density germanium (Ge) buffer layers on silicon (Si) substrates have long been developed for group IV and III–V devices by suppressing defect propagation during epitaxial growth. This is a crucial step for the development of highly efficient photonic devices on Si substrates. Patterned silicon substrates have increasingly been employed for their ability to restrict and hinder the motion of defects. In this work, we demonstrate the effectiveness of an optimised two-step growth recipe structure on a (111)-faceted V-groove silicon substrate with a 350 nm flat ridge. This strategy successfully reduces the threading dislocation (TD) density while growing a 1 μm Ge buffer layer via molecular beam epitaxy. As a result, a high-quality buffer is produced with a low TD density on the order of 107 cm−2 and a surface roughness below 1 nm.</abstract><type>Journal Article</type><journal>Journal of Physics D: Applied Physics</journal><volume>57</volume><journalNumber>25</journalNumber><paginationStart>255101</paginationStart><paginationEnd/><publisher>IOP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-3727</issnPrint><issnElectronic>1361-6463</issnElectronic><keywords>V-groove, aspect ratio trapping, annealing</keywords><publishedDay>28</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-06-28</publishedDate><doi>10.1088/1361-6463/ad31e0</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>This work wassupported by the UKEngineering and Physical Sciences Research Council (EP/P006973/1, EP/R029075/1, EP/T028475/1, EP/V036327/1, EP/V048732/1, W021080/1, and EP/X015300/1, EP/S024441/1).</funders><projectreference/><lastEdited>2024-10-24T14:08:23.2924953</lastEdited><Created>2024-09-14T10:13:39.9959069</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Makhayeni</firstname><surname>Mtunzi</surname><orcid>0009-0000-3924-2726</orcid><order>1</order></author><author><firstname>Hui</firstname><surname>Jia</surname><orcid>0000-0002-8325-3948</orcid><order>2</order></author><author><firstname>Yaonan</firstname><surname>Hou</surname><orcid>0000-0001-9461-3841</orcid><order>3</order></author><author><firstname>Xueying</firstname><surname>Yu</surname><order>4</order></author><author><firstname>Haotian</firstname><surname>Zeng</surname><order>5</order></author><author><firstname>Junjie</firstname><surname>Yang</surname><order>6</order></author><author><firstname>Xingzhao</firstname><surname>Yan</surname><order>7</order></author><author><firstname>Ilias</firstname><surname>Skandalos</surname><order>8</order></author><author><firstname>Huiwen</firstname><surname>Deng</surname><order>9</order></author><author><firstname>Jae-Seong</firstname><surname>Park</surname><order>10</order></author><author><firstname>Wei</firstname><surname>Li</surname><orcid>0000-0002-7411-5519</orcid><order>11</order></author><author><firstname>Ang</firstname><surname>Li</surname><order>12</order></author><author><firstname>Khalil El</firstname><surname>Hajraoui</surname><order>13</order></author><author><firstname>Quentin</firstname><surname>Ramasse</surname><order>14</order></author><author><firstname>Frederic</firstname><surname>Gardes</surname><order>15</order></author><author><firstname>Mingchu</firstname><surname>Tang</surname><order>16</order></author><author><firstname>Siming</firstname><surname>Chen</surname><orcid>0000-0002-4361-0664</orcid><order>17</order></author><author><firstname>Alwyn</firstname><surname>Seeds</surname><order>18</order></author><author><firstname>Huiyun</firstname><surname>Liu</surname><orcid>0000-0002-7654-8553</orcid><order>19</order></author></authors><documents><document><filename>67691__32701__0c13f5bf56994e28aa35494a82a154d8.pdf</filename><originalFilename>67691.VoR.pdf</originalFilename><uploaded>2024-10-24T13:57:16.6560039</uploaded><type>Output</type><contentLength>3938584</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of the Creative Commons Attribution 4.0 licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling v2 67691 2024-09-14 High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy 113975f710084997abdb26ad5fa03e8e 0000-0001-9461-3841 Yaonan Hou Yaonan Hou true false 2024-09-14 ACEM High-quality and low-defect-density germanium (Ge) buffer layers on silicon (Si) substrates have long been developed for group IV and III–V devices by suppressing defect propagation during epitaxial growth. This is a crucial step for the development of highly efficient photonic devices on Si substrates. Patterned silicon substrates have increasingly been employed for their ability to restrict and hinder the motion of defects. In this work, we demonstrate the effectiveness of an optimised two-step growth recipe structure on a (111)-faceted V-groove silicon substrate with a 350 nm flat ridge. This strategy successfully reduces the threading dislocation (TD) density while growing a 1 μm Ge buffer layer via molecular beam epitaxy. As a result, a high-quality buffer is produced with a low TD density on the order of 107 cm−2 and a surface roughness below 1 nm. Journal Article Journal of Physics D: Applied Physics 57 25 255101 IOP Publishing 0022-3727 1361-6463 V-groove, aspect ratio trapping, annealing 28 6 2024 2024-06-28 10.1088/1361-6463/ad31e0 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University Another institution paid the OA fee This work wassupported by the UKEngineering and Physical Sciences Research Council (EP/P006973/1, EP/R029075/1, EP/T028475/1, EP/V036327/1, EP/V048732/1, W021080/1, and EP/X015300/1, EP/S024441/1). 2024-10-24T14:08:23.2924953 2024-09-14T10:13:39.9959069 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Makhayeni Mtunzi 0009-0000-3924-2726 1 Hui Jia 0000-0002-8325-3948 2 Yaonan Hou 0000-0001-9461-3841 3 Xueying Yu 4 Haotian Zeng 5 Junjie Yang 6 Xingzhao Yan 7 Ilias Skandalos 8 Huiwen Deng 9 Jae-Seong Park 10 Wei Li 0000-0002-7411-5519 11 Ang Li 12 Khalil El Hajraoui 13 Quentin Ramasse 14 Frederic Gardes 15 Mingchu Tang 16 Siming Chen 0000-0002-4361-0664 17 Alwyn Seeds 18 Huiyun Liu 0000-0002-7654-8553 19 67691__32701__0c13f5bf56994e28aa35494a82a154d8.pdf 67691.VoR.pdf 2024-10-24T13:57:16.6560039 Output 3938584 application/pdf Version of Record true Released under the terms of the Creative Commons Attribution 4.0 licence. true eng https://creativecommons.org/licenses/by/4.0/
title High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy
spellingShingle High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy
Yaonan Hou
title_short High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy
title_full High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy
title_fullStr High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy
title_full_unstemmed High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy
title_sort High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy
author_id_str_mv 113975f710084997abdb26ad5fa03e8e
author_id_fullname_str_mv 113975f710084997abdb26ad5fa03e8e_***_Yaonan Hou
author Yaonan Hou
author2 Makhayeni Mtunzi
Hui Jia
Yaonan Hou
Xueying Yu
Haotian Zeng
Junjie Yang
Xingzhao Yan
Ilias Skandalos
Huiwen Deng
Jae-Seong Park
Wei Li
Ang Li
Khalil El Hajraoui
Quentin Ramasse
Frederic Gardes
Mingchu Tang
Siming Chen
Alwyn Seeds
Huiyun Liu
format Journal article
container_title Journal of Physics D: Applied Physics
container_volume 57
container_issue 25
container_start_page 255101
publishDate 2024
institution Swansea University
issn 0022-3727
1361-6463
doi_str_mv 10.1088/1361-6463/ad31e0
publisher IOP Publishing
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering
document_store_str 1
active_str 0
description High-quality and low-defect-density germanium (Ge) buffer layers on silicon (Si) substrates have long been developed for group IV and III–V devices by suppressing defect propagation during epitaxial growth. This is a crucial step for the development of highly efficient photonic devices on Si substrates. Patterned silicon substrates have increasingly been employed for their ability to restrict and hinder the motion of defects. In this work, we demonstrate the effectiveness of an optimised two-step growth recipe structure on a (111)-faceted V-groove silicon substrate with a 350 nm flat ridge. This strategy successfully reduces the threading dislocation (TD) density while growing a 1 μm Ge buffer layer via molecular beam epitaxy. As a result, a high-quality buffer is produced with a low TD density on the order of 107 cm−2 and a surface roughness below 1 nm.
published_date 2024-06-28T14:08:21Z
_version_ 1813800866799419392
score 11.03559