Journal article 75 views
High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy
Journal of Physics D: Applied Physics, Volume: 57, Issue: 25, Start page: 255101
Swansea University Author: Yaonan Hou
-
PDF | Version of Record
Released under the terms of the Creative Commons Attribution 4.0 licence.
Download (3.76MB)
DOI (Published version): 10.1088/1361-6463/ad31e0
Abstract
High-quality and low-defect-density germanium (Ge) buffer layers on silicon (Si) substrates have long been developed for group IV and III–V devices by suppressing defect propagation during epitaxial growth. This is a crucial step for the development of highly efficient photonic devices on Si substra...
Published in: | Journal of Physics D: Applied Physics |
---|---|
ISSN: | 0022-3727 1361-6463 |
Published: |
IOP Publishing
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67691 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2024-09-25T19:10:47Z |
---|---|
last_indexed |
2024-09-25T19:10:47Z |
id |
cronfa67691 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67691</id><entry>2024-09-14</entry><title>High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy</title><swanseaauthors><author><sid>113975f710084997abdb26ad5fa03e8e</sid><ORCID>0000-0001-9461-3841</ORCID><firstname>Yaonan</firstname><surname>Hou</surname><name>Yaonan Hou</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-14</date><deptcode>ACEM</deptcode><abstract>High-quality and low-defect-density germanium (Ge) buffer layers on silicon (Si) substrates have long been developed for group IV and III–V devices by suppressing defect propagation during epitaxial growth. This is a crucial step for the development of highly efficient photonic devices on Si substrates. Patterned silicon substrates have increasingly been employed for their ability to restrict and hinder the motion of defects. In this work, we demonstrate the effectiveness of an optimised two-step growth recipe structure on a (111)-faceted V-groove silicon substrate with a 350 nm flat ridge. This strategy successfully reduces the threading dislocation (TD) density while growing a 1 μm Ge buffer layer via molecular beam epitaxy. As a result, a high-quality buffer is produced with a low TD density on the order of 107 cm−2 and a surface roughness below 1 nm.</abstract><type>Journal Article</type><journal>Journal of Physics D: Applied Physics</journal><volume>57</volume><journalNumber>25</journalNumber><paginationStart>255101</paginationStart><paginationEnd/><publisher>IOP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-3727</issnPrint><issnElectronic>1361-6463</issnElectronic><keywords>V-groove, aspect ratio trapping, annealing</keywords><publishedDay>28</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-06-28</publishedDate><doi>10.1088/1361-6463/ad31e0</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>This work wassupported by the UKEngineering and Physical Sciences Research Council (EP/P006973/1, EP/R029075/1, EP/T028475/1, EP/V036327/1, EP/V048732/1, W021080/1, and EP/X015300/1, EP/S024441/1).</funders><projectreference/><lastEdited>2024-10-24T14:08:23.2924953</lastEdited><Created>2024-09-14T10:13:39.9959069</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Makhayeni</firstname><surname>Mtunzi</surname><orcid>0009-0000-3924-2726</orcid><order>1</order></author><author><firstname>Hui</firstname><surname>Jia</surname><orcid>0000-0002-8325-3948</orcid><order>2</order></author><author><firstname>Yaonan</firstname><surname>Hou</surname><orcid>0000-0001-9461-3841</orcid><order>3</order></author><author><firstname>Xueying</firstname><surname>Yu</surname><order>4</order></author><author><firstname>Haotian</firstname><surname>Zeng</surname><order>5</order></author><author><firstname>Junjie</firstname><surname>Yang</surname><order>6</order></author><author><firstname>Xingzhao</firstname><surname>Yan</surname><order>7</order></author><author><firstname>Ilias</firstname><surname>Skandalos</surname><order>8</order></author><author><firstname>Huiwen</firstname><surname>Deng</surname><order>9</order></author><author><firstname>Jae-Seong</firstname><surname>Park</surname><order>10</order></author><author><firstname>Wei</firstname><surname>Li</surname><orcid>0000-0002-7411-5519</orcid><order>11</order></author><author><firstname>Ang</firstname><surname>Li</surname><order>12</order></author><author><firstname>Khalil El</firstname><surname>Hajraoui</surname><order>13</order></author><author><firstname>Quentin</firstname><surname>Ramasse</surname><order>14</order></author><author><firstname>Frederic</firstname><surname>Gardes</surname><order>15</order></author><author><firstname>Mingchu</firstname><surname>Tang</surname><order>16</order></author><author><firstname>Siming</firstname><surname>Chen</surname><orcid>0000-0002-4361-0664</orcid><order>17</order></author><author><firstname>Alwyn</firstname><surname>Seeds</surname><order>18</order></author><author><firstname>Huiyun</firstname><surname>Liu</surname><orcid>0000-0002-7654-8553</orcid><order>19</order></author></authors><documents><document><filename>67691__32701__0c13f5bf56994e28aa35494a82a154d8.pdf</filename><originalFilename>67691.VoR.pdf</originalFilename><uploaded>2024-10-24T13:57:16.6560039</uploaded><type>Output</type><contentLength>3938584</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of the Creative Commons Attribution 4.0 licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 67691 2024-09-14 High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy 113975f710084997abdb26ad5fa03e8e 0000-0001-9461-3841 Yaonan Hou Yaonan Hou true false 2024-09-14 ACEM High-quality and low-defect-density germanium (Ge) buffer layers on silicon (Si) substrates have long been developed for group IV and III–V devices by suppressing defect propagation during epitaxial growth. This is a crucial step for the development of highly efficient photonic devices on Si substrates. Patterned silicon substrates have increasingly been employed for their ability to restrict and hinder the motion of defects. In this work, we demonstrate the effectiveness of an optimised two-step growth recipe structure on a (111)-faceted V-groove silicon substrate with a 350 nm flat ridge. This strategy successfully reduces the threading dislocation (TD) density while growing a 1 μm Ge buffer layer via molecular beam epitaxy. As a result, a high-quality buffer is produced with a low TD density on the order of 107 cm−2 and a surface roughness below 1 nm. Journal Article Journal of Physics D: Applied Physics 57 25 255101 IOP Publishing 0022-3727 1361-6463 V-groove, aspect ratio trapping, annealing 28 6 2024 2024-06-28 10.1088/1361-6463/ad31e0 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University Another institution paid the OA fee This work wassupported by the UKEngineering and Physical Sciences Research Council (EP/P006973/1, EP/R029075/1, EP/T028475/1, EP/V036327/1, EP/V048732/1, W021080/1, and EP/X015300/1, EP/S024441/1). 2024-10-24T14:08:23.2924953 2024-09-14T10:13:39.9959069 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Makhayeni Mtunzi 0009-0000-3924-2726 1 Hui Jia 0000-0002-8325-3948 2 Yaonan Hou 0000-0001-9461-3841 3 Xueying Yu 4 Haotian Zeng 5 Junjie Yang 6 Xingzhao Yan 7 Ilias Skandalos 8 Huiwen Deng 9 Jae-Seong Park 10 Wei Li 0000-0002-7411-5519 11 Ang Li 12 Khalil El Hajraoui 13 Quentin Ramasse 14 Frederic Gardes 15 Mingchu Tang 16 Siming Chen 0000-0002-4361-0664 17 Alwyn Seeds 18 Huiyun Liu 0000-0002-7654-8553 19 67691__32701__0c13f5bf56994e28aa35494a82a154d8.pdf 67691.VoR.pdf 2024-10-24T13:57:16.6560039 Output 3938584 application/pdf Version of Record true Released under the terms of the Creative Commons Attribution 4.0 licence. true eng https://creativecommons.org/licenses/by/4.0/ |
title |
High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy |
spellingShingle |
High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy Yaonan Hou |
title_short |
High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy |
title_full |
High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy |
title_fullStr |
High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy |
title_full_unstemmed |
High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy |
title_sort |
High-quality germanium growth on (111)-faceted V-groove silicon by molecular beam epitaxy |
author_id_str_mv |
113975f710084997abdb26ad5fa03e8e |
author_id_fullname_str_mv |
113975f710084997abdb26ad5fa03e8e_***_Yaonan Hou |
author |
Yaonan Hou |
author2 |
Makhayeni Mtunzi Hui Jia Yaonan Hou Xueying Yu Haotian Zeng Junjie Yang Xingzhao Yan Ilias Skandalos Huiwen Deng Jae-Seong Park Wei Li Ang Li Khalil El Hajraoui Quentin Ramasse Frederic Gardes Mingchu Tang Siming Chen Alwyn Seeds Huiyun Liu |
format |
Journal article |
container_title |
Journal of Physics D: Applied Physics |
container_volume |
57 |
container_issue |
25 |
container_start_page |
255101 |
publishDate |
2024 |
institution |
Swansea University |
issn |
0022-3727 1361-6463 |
doi_str_mv |
10.1088/1361-6463/ad31e0 |
publisher |
IOP Publishing |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
High-quality and low-defect-density germanium (Ge) buffer layers on silicon (Si) substrates have long been developed for group IV and III–V devices by suppressing defect propagation during epitaxial growth. This is a crucial step for the development of highly efficient photonic devices on Si substrates. Patterned silicon substrates have increasingly been employed for their ability to restrict and hinder the motion of defects. In this work, we demonstrate the effectiveness of an optimised two-step growth recipe structure on a (111)-faceted V-groove silicon substrate with a 350 nm flat ridge. This strategy successfully reduces the threading dislocation (TD) density while growing a 1 μm Ge buffer layer via molecular beam epitaxy. As a result, a high-quality buffer is produced with a low TD density on the order of 107 cm−2 and a surface roughness below 1 nm. |
published_date |
2024-06-28T14:08:21Z |
_version_ |
1813800866799419392 |
score |
11.03559 |