Journal article 20 views
Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF
Machine Learning: Science and Technology, Volume: 7, Issue: 1, Start page: 013002
Swansea University Author:
Gert Aarts
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1088/2632-2153/ae35cd
Abstract
Artificial intelligence (AI) is transforming scientific research, with deep learning methods playing a central role in data analysis, simulations, and signal detection across particle, nuclear, and astroparticle physics. Within the JENA communities-ECFA, NuPECC, and APPEC-and as part of the EuCAIF i...
| Published in: | Machine Learning: Science and Technology |
|---|---|
| ISSN: | 2632-2153 |
| Published: |
IOP Publishing
2026
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa71411 |
| first_indexed |
2026-02-13T06:39:25Z |
|---|---|
| last_indexed |
2026-02-14T05:31:40Z |
| id |
cronfa71411 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2026-02-13T06:39:22.9391674</datestamp><bib-version>v2</bib-version><id>71411</id><entry>2026-02-13</entry><title>Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF</title><swanseaauthors><author><sid>1ba0dad382dfe18348ec32fc65f3f3de</sid><ORCID>0000-0002-6038-3782</ORCID><firstname>Gert</firstname><surname>Aarts</surname><name>Gert Aarts</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2026-02-13</date><deptcode>BGPS</deptcode><abstract>Artificial intelligence (AI) is transforming scientific research, with deep learning methods playing a central role in data analysis, simulations, and signal detection across particle, nuclear, and astroparticle physics. Within the JENA communities-ECFA, NuPECC, and APPEC-and as part of the EuCAIF initiative, AI integration is advancing steadily. However, broader adoption remains constrained by challenges such as limited computational resources, a lack of expertise, and difficulties in transitioning from research and development (R&D) to production. This white paper provides a strategic roadmap, informed by a community survey, to address these barriers. It outlines critical infrastructure requirements, prioritizes training initiatives, and proposes funding strategies to scale AI capabilities across fundamental physics over the next five years.</abstract><type>Journal Article</type><journal>Machine Learning: Science and Technology</journal><volume>7</volume><journalNumber>1</journalNumber><paginationStart>013002</paginationStart><paginationEnd/><publisher>IOP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2632-2153</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2026</publishedYear><publishedDate>2026-02-01</publishedDate><doi>10.1088/2632-2153/ae35cd</doi><url>https://doi.org/10.1088/2632-2153/ae35cd</url><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2026-02-13T06:39:22.9391674</lastEdited><Created>2026-02-13T06:34:24.3053600</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Sascha</firstname><surname>Caron</surname><order>1</order></author><author><firstname>Andreas</firstname><surname>Ipp</surname><orcid>0000-0001-9511-3523</orcid><order>2</order></author><author><firstname>Gert</firstname><surname>Aarts</surname><orcid>0000-0002-6038-3782</orcid><order>3</order></author><author><firstname>Gábor</firstname><surname>Bíró</surname><order>4</order></author><author><firstname>Daniele</firstname><surname>Bonacorsi</surname><order>5</order></author><author><firstname>Elena</firstname><surname>Cuoco</surname><orcid>0000-0002-6528-3449</orcid><order>6</order></author><author><firstname>Caterina</firstname><surname>Doglioni</surname><order>7</order></author><author><firstname>Tommaso</firstname><surname>Dorigo</surname><orcid>0000-0002-1659-8727</orcid><order>8</order></author><author><firstname>Julián García</firstname><surname>Pardiñas</surname><order>9</order></author><author><firstname>Stefano</firstname><surname>Giagu</surname><orcid>0000-0001-9192-3537</orcid><order>10</order></author><author><firstname>Tobias</firstname><surname>Golling</surname><orcid>0000-0001-8535-6687</orcid><order>11</order></author><author><firstname>Lukas</firstname><surname>Heinrich</surname><orcid>0000-0002-4048-7584</orcid><order>12</order></author><author><firstname>Ik Siong</firstname><surname>Heng</surname><orcid>0000-0002-1977-0019</orcid><order>13</order></author><author><firstname>Paula Gina</firstname><surname>Isar</surname><order>14</order></author><author><firstname>Karolos</firstname><surname>Potamianos</surname><orcid>0000-0001-7839-9785</orcid><order>15</order></author><author><firstname>Liliana</firstname><surname>Teodorescu</surname><orcid>0000-0002-6974-6201</orcid><order>16</order></author><author><firstname>John</firstname><surname>Veitch</surname><order>17</order></author><author><firstname>Pietro</firstname><surname>Vischia</surname><order>18</order></author><author><firstname>Christoph</firstname><surname>Weniger</surname><order>19</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2026-02-13T06:39:22.9391674 v2 71411 2026-02-13 Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF 1ba0dad382dfe18348ec32fc65f3f3de 0000-0002-6038-3782 Gert Aarts Gert Aarts true false 2026-02-13 BGPS Artificial intelligence (AI) is transforming scientific research, with deep learning methods playing a central role in data analysis, simulations, and signal detection across particle, nuclear, and astroparticle physics. Within the JENA communities-ECFA, NuPECC, and APPEC-and as part of the EuCAIF initiative, AI integration is advancing steadily. However, broader adoption remains constrained by challenges such as limited computational resources, a lack of expertise, and difficulties in transitioning from research and development (R&D) to production. This white paper provides a strategic roadmap, informed by a community survey, to address these barriers. It outlines critical infrastructure requirements, prioritizes training initiatives, and proposes funding strategies to scale AI capabilities across fundamental physics over the next five years. Journal Article Machine Learning: Science and Technology 7 1 013002 IOP Publishing 2632-2153 1 2 2026 2026-02-01 10.1088/2632-2153/ae35cd https://doi.org/10.1088/2632-2153/ae35cd COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2026-02-13T06:39:22.9391674 2026-02-13T06:34:24.3053600 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Sascha Caron 1 Andreas Ipp 0000-0001-9511-3523 2 Gert Aarts 0000-0002-6038-3782 3 Gábor Bíró 4 Daniele Bonacorsi 5 Elena Cuoco 0000-0002-6528-3449 6 Caterina Doglioni 7 Tommaso Dorigo 0000-0002-1659-8727 8 Julián García Pardiñas 9 Stefano Giagu 0000-0001-9192-3537 10 Tobias Golling 0000-0001-8535-6687 11 Lukas Heinrich 0000-0002-4048-7584 12 Ik Siong Heng 0000-0002-1977-0019 13 Paula Gina Isar 14 Karolos Potamianos 0000-0001-7839-9785 15 Liliana Teodorescu 0000-0002-6974-6201 16 John Veitch 17 Pietro Vischia 18 Christoph Weniger 19 |
| title |
Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF |
| spellingShingle |
Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF Gert Aarts |
| title_short |
Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF |
| title_full |
Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF |
| title_fullStr |
Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF |
| title_full_unstemmed |
Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF |
| title_sort |
Strategic white paper on AI infrastructure for particle, nuclear, and astroparticle physics: insights from JENA and EuCAIF |
| author_id_str_mv |
1ba0dad382dfe18348ec32fc65f3f3de |
| author_id_fullname_str_mv |
1ba0dad382dfe18348ec32fc65f3f3de_***_Gert Aarts |
| author |
Gert Aarts |
| author2 |
Sascha Caron Andreas Ipp Gert Aarts Gábor Bíró Daniele Bonacorsi Elena Cuoco Caterina Doglioni Tommaso Dorigo Julián García Pardiñas Stefano Giagu Tobias Golling Lukas Heinrich Ik Siong Heng Paula Gina Isar Karolos Potamianos Liliana Teodorescu John Veitch Pietro Vischia Christoph Weniger |
| format |
Journal article |
| container_title |
Machine Learning: Science and Technology |
| container_volume |
7 |
| container_issue |
1 |
| container_start_page |
013002 |
| publishDate |
2026 |
| institution |
Swansea University |
| issn |
2632-2153 |
| doi_str_mv |
10.1088/2632-2153/ae35cd |
| publisher |
IOP Publishing |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
| url |
https://doi.org/10.1088/2632-2153/ae35cd |
| document_store_str |
0 |
| active_str |
0 |
| description |
Artificial intelligence (AI) is transforming scientific research, with deep learning methods playing a central role in data analysis, simulations, and signal detection across particle, nuclear, and astroparticle physics. Within the JENA communities-ECFA, NuPECC, and APPEC-and as part of the EuCAIF initiative, AI integration is advancing steadily. However, broader adoption remains constrained by challenges such as limited computational resources, a lack of expertise, and difficulties in transitioning from research and development (R&D) to production. This white paper provides a strategic roadmap, informed by a community survey, to address these barriers. It outlines critical infrastructure requirements, prioritizes training initiatives, and proposes funding strategies to scale AI capabilities across fundamental physics over the next five years. |
| published_date |
2026-02-01T06:47:16Z |
| _version_ |
1857625822137942016 |
| score |
11.096768 |

