Journal article 1465 views
Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs
IEEE Transactions on Electron Devices, Volume: 61, Issue: 2, Pages: 423 - 429
Swansea University Authors: Wulf Dettmer , Karol Kalna , Djordje Peric
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/TED.2013.2296209
Abstract
Solutions of the 2-D Schrödinger equation across the channel using a finite element method have been implemented into a 3-D finite element (FE) ensemble Monte Carlo (MC) device simulation toolbox as quantum corrections. The 2-D FE Schrödinger equation-based quantum corrections are entirely calibrati...
Published in: | IEEE Transactions on Electron Devices |
---|---|
ISSN: | 0018-9383 1557-9646 |
Published: |
2014
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa21451 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2015-05-17T02:02:55Z |
---|---|
last_indexed |
2021-01-14T03:36:49Z |
id |
cronfa21451 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-01-13T14:55:55.4829742</datestamp><bib-version>v2</bib-version><id>21451</id><entry>2015-05-16</entry><title>Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs</title><swanseaauthors><author><sid>30bb53ad906e7160e947fa01c16abf55</sid><ORCID>0000-0003-0799-4645</ORCID><firstname>Wulf</firstname><surname>Dettmer</surname><name>Wulf Dettmer</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9d35cb799b2542ad39140943a9a9da65</sid><ORCID>0000-0002-1112-301X</ORCID><firstname>Djordje</firstname><surname>Peric</surname><name>Djordje Peric</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-05-16</date><deptcode>AERO</deptcode><abstract>Solutions of the 2-D Schrödinger equation across the channel using a finite element method have been implemented into a 3-D finite element (FE) ensemble Monte Carlo (MC) device simulation toolbox as quantum corrections. The 2-D FE Schrödinger equation-based quantum corrections are entirely calibration free and can accurately describe quantum confinement effects in arbitrary device cross sections. The 3-D FE quantum corrected MC simulation is based on the tetrahedral decomposition of the simulation domain and the 2-D Schrödinger equation is solved at prescribed transverse planes of the 3-D mesh in the transport direction. We apply the method to study output characteristics of a nonplanar nanoscaled MOSFET, a{10.7}-nm gate length silicon-on-insulator FinFET, investigating 〈100〉 and 〈110〉 channel orientations. The results are then compared with those obtained from 3-D FE MC simulations with quantum corrections via the density gradient method showing very similar I-V characteristics but very different density distributions.</abstract><type>Journal Article</type><journal>IEEE Transactions on Electron Devices</journal><volume>61</volume><journalNumber>2</journalNumber><paginationStart>423</paginationStart><paginationEnd>429</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0018-9383</issnPrint><issnElectronic>1557-9646</issnElectronic><keywords/><publishedDay>28</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-02-28</publishedDate><doi>10.1109/TED.2013.2296209</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>AERO</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-13T14:55:55.4829742</lastEdited><Created>2015-05-16T08:23:33.3616470</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Jari</firstname><surname>Lindberg</surname><order>1</order></author><author><firstname>Manuel</firstname><surname>Aldegunde</surname><order>2</order></author><author><firstname>Daniel</firstname><surname>Nagy</surname><order>3</order></author><author><firstname>Wulf</firstname><surname>Dettmer</surname><orcid>0000-0003-0799-4645</orcid><order>4</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>5</order></author><author><firstname>Antonio Jesus</firstname><surname>Garcia-Loureiro</surname><order>6</order></author><author><firstname>Djordje</firstname><surname>Peric</surname><orcid>0000-0002-1112-301X</orcid><order>7</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2021-01-13T14:55:55.4829742 v2 21451 2015-05-16 Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs 30bb53ad906e7160e947fa01c16abf55 0000-0003-0799-4645 Wulf Dettmer Wulf Dettmer true false 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 9d35cb799b2542ad39140943a9a9da65 0000-0002-1112-301X Djordje Peric Djordje Peric true false 2015-05-16 AERO Solutions of the 2-D Schrödinger equation across the channel using a finite element method have been implemented into a 3-D finite element (FE) ensemble Monte Carlo (MC) device simulation toolbox as quantum corrections. The 2-D FE Schrödinger equation-based quantum corrections are entirely calibration free and can accurately describe quantum confinement effects in arbitrary device cross sections. The 3-D FE quantum corrected MC simulation is based on the tetrahedral decomposition of the simulation domain and the 2-D Schrödinger equation is solved at prescribed transverse planes of the 3-D mesh in the transport direction. We apply the method to study output characteristics of a nonplanar nanoscaled MOSFET, a{10.7}-nm gate length silicon-on-insulator FinFET, investigating 〈100〉 and 〈110〉 channel orientations. The results are then compared with those obtained from 3-D FE MC simulations with quantum corrections via the density gradient method showing very similar I-V characteristics but very different density distributions. Journal Article IEEE Transactions on Electron Devices 61 2 423 429 0018-9383 1557-9646 28 2 2014 2014-02-28 10.1109/TED.2013.2296209 COLLEGE NANME Aerospace Engineering COLLEGE CODE AERO Swansea University 2021-01-13T14:55:55.4829742 2015-05-16T08:23:33.3616470 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Jari Lindberg 1 Manuel Aldegunde 2 Daniel Nagy 3 Wulf Dettmer 0000-0003-0799-4645 4 Karol Kalna 0000-0002-6333-9189 5 Antonio Jesus Garcia-Loureiro 6 Djordje Peric 0000-0002-1112-301X 7 |
title |
Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs |
spellingShingle |
Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs Wulf Dettmer Karol Kalna Djordje Peric |
title_short |
Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs |
title_full |
Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs |
title_fullStr |
Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs |
title_full_unstemmed |
Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs |
title_sort |
Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs |
author_id_str_mv |
30bb53ad906e7160e947fa01c16abf55 1329a42020e44fdd13de2f20d5143253 9d35cb799b2542ad39140943a9a9da65 |
author_id_fullname_str_mv |
30bb53ad906e7160e947fa01c16abf55_***_Wulf Dettmer 1329a42020e44fdd13de2f20d5143253_***_Karol Kalna 9d35cb799b2542ad39140943a9a9da65_***_Djordje Peric |
author |
Wulf Dettmer Karol Kalna Djordje Peric |
author2 |
Jari Lindberg Manuel Aldegunde Daniel Nagy Wulf Dettmer Karol Kalna Antonio Jesus Garcia-Loureiro Djordje Peric |
format |
Journal article |
container_title |
IEEE Transactions on Electron Devices |
container_volume |
61 |
container_issue |
2 |
container_start_page |
423 |
publishDate |
2014 |
institution |
Swansea University |
issn |
0018-9383 1557-9646 |
doi_str_mv |
10.1109/TED.2013.2296209 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
0 |
active_str |
0 |
description |
Solutions of the 2-D Schrödinger equation across the channel using a finite element method have been implemented into a 3-D finite element (FE) ensemble Monte Carlo (MC) device simulation toolbox as quantum corrections. The 2-D FE Schrödinger equation-based quantum corrections are entirely calibration free and can accurately describe quantum confinement effects in arbitrary device cross sections. The 3-D FE quantum corrected MC simulation is based on the tetrahedral decomposition of the simulation domain and the 2-D Schrödinger equation is solved at prescribed transverse planes of the 3-D mesh in the transport direction. We apply the method to study output characteristics of a nonplanar nanoscaled MOSFET, a{10.7}-nm gate length silicon-on-insulator FinFET, investigating 〈100〉 and 〈110〉 channel orientations. The results are then compared with those obtained from 3-D FE MC simulations with quantum corrections via the density gradient method showing very similar I-V characteristics but very different density distributions. |
published_date |
2014-02-28T03:25:27Z |
_version_ |
1763750893106233344 |
score |
11.027871 |