No Cover Image

Journal article 642 views

Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs / Jari Lindberg, Manuel Aldegunde, Daniel Nagy, Wulf Dettmer, Karol Kalna, Antonio Jesus Garcia-Loureiro, Djordje Peric

IEEE Transactions on Electron Devices, Volume: 61, Issue: 2, Pages: 423 - 429

Swansea University Authors: Wulf Dettmer, Karol Kalna, Djordje Peric

Full text not available from this repository: check for access using links below.

Abstract

Solutions of the 2-D Schrödinger equation across the channel using a finite element method have been implemented into a 3-D finite element (FE) ensemble Monte Carlo (MC) device simulation toolbox as quantum corrections. The 2-D FE Schrödinger equation-based quantum corrections are entirely calibrati...

Full description

Published in: IEEE Transactions on Electron Devices
ISSN: 0018-9383 1557-9646
Published: 2014
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa21451
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2015-05-17T02:02:55Z
last_indexed 2021-01-14T03:36:49Z
id cronfa21451
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-13T14:55:55.4829742</datestamp><bib-version>v2</bib-version><id>21451</id><entry>2015-05-16</entry><title>Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs</title><swanseaauthors><author><sid>30bb53ad906e7160e947fa01c16abf55</sid><ORCID>0000-0003-0799-4645</ORCID><firstname>Wulf</firstname><surname>Dettmer</surname><name>Wulf Dettmer</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9d35cb799b2542ad39140943a9a9da65</sid><ORCID>0000-0002-1112-301X</ORCID><firstname>Djordje</firstname><surname>Peric</surname><name>Djordje Peric</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-05-16</date><deptcode>AERO</deptcode><abstract>Solutions of the 2-D Schr&#xF6;dinger equation across the channel using a finite element method have been implemented into a 3-D finite element (FE) ensemble Monte Carlo (MC) device simulation toolbox as quantum corrections. The 2-D FE Schr&#xF6;dinger equation-based quantum corrections are entirely calibration free and can accurately describe quantum confinement effects in arbitrary device cross sections. The 3-D FE quantum corrected MC simulation is based on the tetrahedral decomposition of the simulation domain and the 2-D Schr&#xF6;dinger equation is solved at prescribed transverse planes of the 3-D mesh in the transport direction. We apply the method to study output characteristics of a nonplanar nanoscaled MOSFET, a{10.7}-nm gate length silicon-on-insulator FinFET, investigating &#x3008;100&#x3009; and &#x3008;110&#x3009; channel orientations. The results are then compared with those obtained from 3-D FE MC simulations with quantum corrections via the density gradient method showing very similar I-V characteristics but very different density distributions.</abstract><type>Journal Article</type><journal>IEEE Transactions on Electron Devices</journal><volume>61</volume><journalNumber>2</journalNumber><paginationStart>423</paginationStart><paginationEnd>429</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0018-9383</issnPrint><issnElectronic>1557-9646</issnElectronic><keywords/><publishedDay>28</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-02-28</publishedDate><doi>10.1109/TED.2013.2296209</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>AERO</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-13T14:55:55.4829742</lastEdited><Created>2015-05-16T08:23:33.3616470</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>Jari</firstname><surname>Lindberg</surname><order>1</order></author><author><firstname>Manuel</firstname><surname>Aldegunde</surname><order>2</order></author><author><firstname>Daniel</firstname><surname>Nagy</surname><order>3</order></author><author><firstname>Wulf</firstname><surname>Dettmer</surname><orcid>0000-0003-0799-4645</orcid><order>4</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>5</order></author><author><firstname>Antonio Jesus</firstname><surname>Garcia-Loureiro</surname><order>6</order></author><author><firstname>Djordje</firstname><surname>Peric</surname><orcid>0000-0002-1112-301X</orcid><order>7</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2021-01-13T14:55:55.4829742 v2 21451 2015-05-16 Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs 30bb53ad906e7160e947fa01c16abf55 0000-0003-0799-4645 Wulf Dettmer Wulf Dettmer true false 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 9d35cb799b2542ad39140943a9a9da65 0000-0002-1112-301X Djordje Peric Djordje Peric true false 2015-05-16 AERO Solutions of the 2-D Schrödinger equation across the channel using a finite element method have been implemented into a 3-D finite element (FE) ensemble Monte Carlo (MC) device simulation toolbox as quantum corrections. The 2-D FE Schrödinger equation-based quantum corrections are entirely calibration free and can accurately describe quantum confinement effects in arbitrary device cross sections. The 3-D FE quantum corrected MC simulation is based on the tetrahedral decomposition of the simulation domain and the 2-D Schrödinger equation is solved at prescribed transverse planes of the 3-D mesh in the transport direction. We apply the method to study output characteristics of a nonplanar nanoscaled MOSFET, a{10.7}-nm gate length silicon-on-insulator FinFET, investigating 〈100〉 and 〈110〉 channel orientations. The results are then compared with those obtained from 3-D FE MC simulations with quantum corrections via the density gradient method showing very similar I-V characteristics but very different density distributions. Journal Article IEEE Transactions on Electron Devices 61 2 423 429 0018-9383 1557-9646 28 2 2014 2014-02-28 10.1109/TED.2013.2296209 COLLEGE NANME Aerospace Engineering COLLEGE CODE AERO Swansea University 2021-01-13T14:55:55.4829742 2015-05-16T08:23:33.3616470 College of Engineering Engineering Jari Lindberg 1 Manuel Aldegunde 2 Daniel Nagy 3 Wulf Dettmer 0000-0003-0799-4645 4 Karol Kalna 0000-0002-6333-9189 5 Antonio Jesus Garcia-Loureiro 6 Djordje Peric 0000-0002-1112-301X 7
title Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs
spellingShingle Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs
Wulf, Dettmer
Karol, Kalna
Djordje, Peric
title_short Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs
title_full Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs
title_fullStr Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs
title_full_unstemmed Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs
title_sort Quantum Corrections Based on the 2-D Schroedinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs
author_id_str_mv 30bb53ad906e7160e947fa01c16abf55
1329a42020e44fdd13de2f20d5143253
9d35cb799b2542ad39140943a9a9da65
author_id_fullname_str_mv 30bb53ad906e7160e947fa01c16abf55_***_Wulf, Dettmer
1329a42020e44fdd13de2f20d5143253_***_Karol, Kalna
9d35cb799b2542ad39140943a9a9da65_***_Djordje, Peric
author Wulf, Dettmer
Karol, Kalna
Djordje, Peric
author2 Jari Lindberg
Manuel Aldegunde
Daniel Nagy
Wulf Dettmer
Karol Kalna
Antonio Jesus Garcia-Loureiro
Djordje Peric
format Journal article
container_title IEEE Transactions on Electron Devices
container_volume 61
container_issue 2
container_start_page 423
publishDate 2014
institution Swansea University
issn 0018-9383
1557-9646
doi_str_mv 10.1109/TED.2013.2296209
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 0
active_str 0
description Solutions of the 2-D Schrödinger equation across the channel using a finite element method have been implemented into a 3-D finite element (FE) ensemble Monte Carlo (MC) device simulation toolbox as quantum corrections. The 2-D FE Schrödinger equation-based quantum corrections are entirely calibration free and can accurately describe quantum confinement effects in arbitrary device cross sections. The 3-D FE quantum corrected MC simulation is based on the tetrahedral decomposition of the simulation domain and the 2-D Schrödinger equation is solved at prescribed transverse planes of the 3-D mesh in the transport direction. We apply the method to study output characteristics of a nonplanar nanoscaled MOSFET, a{10.7}-nm gate length silicon-on-insulator FinFET, investigating 〈100〉 and 〈110〉 channel orientations. The results are then compared with those obtained from 3-D FE MC simulations with quantum corrections via the density gradient method showing very similar I-V characteristics but very different density distributions.
published_date 2014-02-28T03:34:25Z
_version_ 1717913167148875776
score 10.842329