Journal article 708 views 119 downloads
Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS
Solid-State Electronics
Swansea University Author:
Karol Kalna
-
PDF | Accepted Manuscript
Download (579.27KB)
DOI (Published version): 10.1016/j.sse.2018.01.006
Abstract
A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm...
Published in: | Solid-State Electronics |
---|---|
ISSN: | 0038-1101 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa38406 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2018-02-06T20:28:25Z |
---|---|
last_indexed |
2018-03-19T20:35:34Z |
id |
cronfa38406 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-03-19T16:21:59.3739520</datestamp><bib-version>v2</bib-version><id>38406</id><entry>2018-02-06</entry><title>Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-02-06</date><deptcode>EEEG</deptcode><abstract>A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1×1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.</abstract><type>Journal Article</type><journal>Solid-State Electronics</journal><publisher/><issnPrint>0038-1101</issnPrint><keywords>ab-initio; Band gap narrowing; MOSFETs; III–V semiconductors; 1D Poisson-Schrödinger; Schottky barrier height; Density Functional Theory (DFT)</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1016/j.sse.2018.01.006</doi><url/><notes/><college>COLLEGE NANME</college><department>Electronic and Electrical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-03-19T16:21:59.3739520</lastEdited><Created>2018-02-06T15:43:22.6504695</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>A.H.</firstname><surname>Mohamed</surname><order>1</order></author><author><firstname>R.</firstname><surname>Oxland</surname><order>2</order></author><author><firstname>M.</firstname><surname>Aldegunde</surname><order>3</order></author><author><firstname>S.P.</firstname><surname>Hepplestone</surname><order>4</order></author><author><firstname>P.V.</firstname><surname>Sushko</surname><order>5</order></author><author><firstname>K.</firstname><surname>Kalna</surname><order>6</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>7</order></author></authors><documents><document><filename>0038406-06022018154437.pdf</filename><originalFilename>mohamed2018.pdf</originalFilename><uploaded>2018-02-06T15:44:37.9670000</uploaded><type>Output</type><contentLength>561835</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-02-01T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-03-19T16:21:59.3739520 v2 38406 2018-02-06 Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2018-02-06 EEEG A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1×1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq. Journal Article Solid-State Electronics 0038-1101 ab-initio; Band gap narrowing; MOSFETs; III–V semiconductors; 1D Poisson-Schrödinger; Schottky barrier height; Density Functional Theory (DFT) 31 12 2018 2018-12-31 10.1016/j.sse.2018.01.006 COLLEGE NANME Electronic and Electrical Engineering COLLEGE CODE EEEG Swansea University 2018-03-19T16:21:59.3739520 2018-02-06T15:43:22.6504695 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering A.H. Mohamed 1 R. Oxland 2 M. Aldegunde 3 S.P. Hepplestone 4 P.V. Sushko 5 K. Kalna 6 Karol Kalna 0000-0002-6333-9189 7 0038406-06022018154437.pdf mohamed2018.pdf 2018-02-06T15:44:37.9670000 Output 561835 application/pdf Accepted Manuscript true 2019-02-01T00:00:00.0000000 true eng |
title |
Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS |
spellingShingle |
Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS Karol Kalna |
title_short |
Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS |
title_full |
Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS |
title_fullStr |
Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS |
title_full_unstemmed |
Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS |
title_sort |
Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS |
author_id_str_mv |
1329a42020e44fdd13de2f20d5143253 |
author_id_fullname_str_mv |
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna |
author |
Karol Kalna |
author2 |
A.H. Mohamed R. Oxland M. Aldegunde S.P. Hepplestone P.V. Sushko K. Kalna Karol Kalna |
format |
Journal article |
container_title |
Solid-State Electronics |
publishDate |
2018 |
institution |
Swansea University |
issn |
0038-1101 |
doi_str_mv |
10.1016/j.sse.2018.01.006 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1×1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq. |
published_date |
2018-12-31T03:48:34Z |
_version_ |
1763752347692957696 |
score |
10.971356 |