No Cover Image

Journal article 899 views 138 downloads

Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS

A.H. Mohamed, R. Oxland, M. Aldegunde, S.P. Hepplestone, P.V. Sushko, K. Kalna, Karol Kalna Orcid Logo

Solid-State Electronics

Swansea University Author: Karol Kalna Orcid Logo

Abstract

A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm...

Full description

Published in: Solid-State Electronics
ISSN: 0038-1101
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa38406
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-02-06T20:28:25Z
last_indexed 2018-03-19T20:35:34Z
id cronfa38406
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-03-19T16:21:59.3739520</datestamp><bib-version>v2</bib-version><id>38406</id><entry>2018-02-06</entry><title>Narrowing of band gap at source/drain contact scheme of nanoscale InAs&#x2013;nMOS</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-02-06</date><deptcode>EEEG</deptcode><abstract>A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1&#xD7;1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schr&#xF6;dinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 &#x3A9;/sq which is in a good agreement with an experimental value of 97 &#x3A9;/sq.</abstract><type>Journal Article</type><journal>Solid-State Electronics</journal><publisher/><issnPrint>0038-1101</issnPrint><keywords>ab-initio; Band gap narrowing; MOSFETs; III&#x2013;V semiconductors; 1D Poisson-Schr&#xF6;dinger; Schottky barrier height; Density Functional Theory (DFT)</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1016/j.sse.2018.01.006</doi><url/><notes/><college>COLLEGE NANME</college><department>Electronic and Electrical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-03-19T16:21:59.3739520</lastEdited><Created>2018-02-06T15:43:22.6504695</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>A.H.</firstname><surname>Mohamed</surname><order>1</order></author><author><firstname>R.</firstname><surname>Oxland</surname><order>2</order></author><author><firstname>M.</firstname><surname>Aldegunde</surname><order>3</order></author><author><firstname>S.P.</firstname><surname>Hepplestone</surname><order>4</order></author><author><firstname>P.V.</firstname><surname>Sushko</surname><order>5</order></author><author><firstname>K.</firstname><surname>Kalna</surname><order>6</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>7</order></author></authors><documents><document><filename>0038406-06022018154437.pdf</filename><originalFilename>mohamed2018.pdf</originalFilename><uploaded>2018-02-06T15:44:37.9670000</uploaded><type>Output</type><contentLength>561835</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-02-01T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-03-19T16:21:59.3739520 v2 38406 2018-02-06 Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2018-02-06 EEEG A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1×1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq. Journal Article Solid-State Electronics 0038-1101 ab-initio; Band gap narrowing; MOSFETs; III–V semiconductors; 1D Poisson-Schrödinger; Schottky barrier height; Density Functional Theory (DFT) 31 12 2018 2018-12-31 10.1016/j.sse.2018.01.006 COLLEGE NANME Electronic and Electrical Engineering COLLEGE CODE EEEG Swansea University 2018-03-19T16:21:59.3739520 2018-02-06T15:43:22.6504695 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering A.H. Mohamed 1 R. Oxland 2 M. Aldegunde 3 S.P. Hepplestone 4 P.V. Sushko 5 K. Kalna 6 Karol Kalna 0000-0002-6333-9189 7 0038406-06022018154437.pdf mohamed2018.pdf 2018-02-06T15:44:37.9670000 Output 561835 application/pdf Accepted Manuscript true 2019-02-01T00:00:00.0000000 true eng
title Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS
spellingShingle Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS
Karol Kalna
title_short Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS
title_full Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS
title_fullStr Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS
title_full_unstemmed Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS
title_sort Narrowing of band gap at source/drain contact scheme of nanoscale InAs–nMOS
author_id_str_mv 1329a42020e44fdd13de2f20d5143253
author_id_fullname_str_mv 1329a42020e44fdd13de2f20d5143253_***_Karol Kalna
author Karol Kalna
author2 A.H. Mohamed
R. Oxland
M. Aldegunde
S.P. Hepplestone
P.V. Sushko
K. Kalna
Karol Kalna
format Journal article
container_title Solid-State Electronics
publishDate 2018
institution Swansea University
issn 0038-1101
doi_str_mv 10.1016/j.sse.2018.01.006
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering
document_store_str 1
active_str 0
description A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1×1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.
published_date 2018-12-31T03:48:34Z
_version_ 1763752347692957696
score 11.021648