Journal article 782 views 154 downloads
Biomechanics of cells and subcellular components: A comprehensive review of computational models and applications
International Journal for Numerical Methods in Biomedical Engineering, Volume: 37, Issue: 12
Swansea University Authors: Chengyuan Wang , Si Li , Adesola Ademiloye , Perumal Nithiarasu
-
PDF | Accepted Manuscript
Download (1.66MB)
DOI (Published version): 10.1002/cnm.3520
Abstract
Cells are a fundamental structural, functional and biological unit for all living organisms. Up till now, considerable efforts have been made to study the responses of single cells and subcellular components to an external load, and understand the biophysics underlying cell rheology, mechanotransduc...
Published in: | International Journal for Numerical Methods in Biomedical Engineering |
---|---|
ISSN: | 2040-7939 2040-7947 |
Published: |
Wiley
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57696 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Cells are a fundamental structural, functional and biological unit for all living organisms. Up till now, considerable efforts have been made to study the responses of single cells and subcellular components to an external load, and understand the biophysics underlying cell rheology, mechanotransduction and cell functions using experimental and in silico approaches. In the last decade, computational simulation has become increasingly attractive due to its critical role in interpreting experimental data, analysing complex cellular/subcellular structures, facilitating diagnostic designs and therapeutic techniques, and developing biomimetic materials. Despite the significant progress, developing comprehensive and accurate models of living cells remains a grand challenge in the 21st century. To understand current state of the art, this review summarises and classifies the vast array of computational biomechanical models for cells. The article covers the cellular components at multi-spatial levels, that is, protein polymers, subcellular components, whole cells and the systems with scale beyond a cell. In addition to the comprehensive review of the topic, this article also provides new insights into the future prospects of developing integrated, active and high-fidelity cell models that are multiscale, multi-physics and multi-disciplinary in nature. This review will be beneficial for the researchers in modelling the biomechanics of subcellular components, cells and multiple cell systems and understanding the cell functions and biological processes from the perspective of cell mechanics. |
---|---|
Keywords: |
protein filaments, subcellular components, cells, systems beyond a cell, biomechanical models |
College: |
Faculty of Science and Engineering |
Issue: |
12 |