Journal article 621 views 418 downloads
Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs
IEEE Electron Device Letters, Volume: 42, Issue: 10, Pages: 1416 - 1419
Swansea University Author: Karol Kalna
DOI (Published version): 10.1109/led.2021.3109586
Abstract
Four sources of variability, metal grain granularity (MGG), line-edge roughness (LER), gate-edge roughness (GER), and random discrete dopants (RDD), affecting the performance of state-of-the-art FinFET, nanosheet (NS), and nanowire (NW) FETs, are analysed via our in-house 3D finite-element drift-dif...
Published in: | IEEE Electron Device Letters |
---|---|
ISSN: | 0741-3106 1558-0563 |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58107 |
first_indexed |
2021-09-27T10:13:19Z |
---|---|
last_indexed |
2023-01-11T14:38:28Z |
id |
cronfa58107 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-31T19:03:34.3202388</datestamp><bib-version>v2</bib-version><id>58107</id><entry>2021-09-27</entry><title>Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-09-27</date><deptcode>ACEM</deptcode><abstract>Four sources of variability, metal grain granularity (MGG), line-edge roughness (LER), gate-edge roughness (GER), and random discrete dopants (RDD), affecting the performance of state-of-the-art FinFET, nanosheet (NS), and nanowire (NW) FETs, are analysed via our in-house 3D finite-element drift-diffusion/Monte Carlo simulator that includes 2D Schrödinger equation quantum corrections. The MGG and LER are the sources of variability that influence device performance of the three multi-gate architectures the most. The FinFET and the NS FET are similarly affected by the MGG variations with threshold voltage and on-current standard deviations significantly lower (at least 20 %) than those of the NW FET. The LER variability has a negligible influence in the NS FET performance with σVT values around 12 and 42 times lower than those of the FinFET and the NW FET. The three architectures are equally affected by the RDD (σVT= 8 mV) and minimally influenced by the GER (σVT ≈ 4 mV). The variability of NS FETs makes them strong candidates to replace FinFETs.</abstract><type>Journal Article</type><journal>IEEE Electron Device Letters</journal><volume>42</volume><journalNumber>10</journalNumber><paginationStart>1416</paginationStart><paginationEnd>1419</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0741-3106</issnPrint><issnElectronic>1558-0563</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-10-01</publishedDate><doi>10.1109/led.2021.3109586</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-31T19:03:34.3202388</lastEdited><Created>2021-09-27T11:10:21.2920502</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Natalia</firstname><surname>Seoane</surname><order>1</order></author><author><firstname>Julian G.</firstname><surname>Fernandez</surname><order>2</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>3</order></author><author><firstname>Enrique</firstname><surname>Comesana</surname><order>4</order></author><author><firstname>Antonio</firstname><surname>Garcia-Loureiro</surname><order>5</order></author></authors><documents><document><filename>58107__21060__c2f87dd8898f49f6b451eefae1b8a66f.pdf</filename><originalFilename>58107.pdf</originalFilename><uploaded>2021-09-30T15:29:29.6816011</uploaded><type>Output</type><contentLength>784260</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>https://creativecommons.org/licenses/by-nc-nd/3.0/</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/3.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-31T19:03:34.3202388 v2 58107 2021-09-27 Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2021-09-27 ACEM Four sources of variability, metal grain granularity (MGG), line-edge roughness (LER), gate-edge roughness (GER), and random discrete dopants (RDD), affecting the performance of state-of-the-art FinFET, nanosheet (NS), and nanowire (NW) FETs, are analysed via our in-house 3D finite-element drift-diffusion/Monte Carlo simulator that includes 2D Schrödinger equation quantum corrections. The MGG and LER are the sources of variability that influence device performance of the three multi-gate architectures the most. The FinFET and the NS FET are similarly affected by the MGG variations with threshold voltage and on-current standard deviations significantly lower (at least 20 %) than those of the NW FET. The LER variability has a negligible influence in the NS FET performance with σVT values around 12 and 42 times lower than those of the FinFET and the NW FET. The three architectures are equally affected by the RDD (σVT= 8 mV) and minimally influenced by the GER (σVT ≈ 4 mV). The variability of NS FETs makes them strong candidates to replace FinFETs. Journal Article IEEE Electron Device Letters 42 10 1416 1419 Institute of Electrical and Electronics Engineers (IEEE) 0741-3106 1558-0563 1 10 2021 2021-10-01 10.1109/led.2021.3109586 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2022-10-31T19:03:34.3202388 2021-09-27T11:10:21.2920502 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Natalia Seoane 1 Julian G. Fernandez 2 Karol Kalna 0000-0002-6333-9189 3 Enrique Comesana 4 Antonio Garcia-Loureiro 5 58107__21060__c2f87dd8898f49f6b451eefae1b8a66f.pdf 58107.pdf 2021-09-30T15:29:29.6816011 Output 784260 application/pdf Accepted Manuscript true https://creativecommons.org/licenses/by-nc-nd/3.0/ true eng https://creativecommons.org/licenses/by-nc-nd/3.0/ |
title |
Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs |
spellingShingle |
Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs Karol Kalna |
title_short |
Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs |
title_full |
Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs |
title_fullStr |
Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs |
title_full_unstemmed |
Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs |
title_sort |
Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs |
author_id_str_mv |
1329a42020e44fdd13de2f20d5143253 |
author_id_fullname_str_mv |
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna |
author |
Karol Kalna |
author2 |
Natalia Seoane Julian G. Fernandez Karol Kalna Enrique Comesana Antonio Garcia-Loureiro |
format |
Journal article |
container_title |
IEEE Electron Device Letters |
container_volume |
42 |
container_issue |
10 |
container_start_page |
1416 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0741-3106 1558-0563 |
doi_str_mv |
10.1109/led.2021.3109586 |
publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Four sources of variability, metal grain granularity (MGG), line-edge roughness (LER), gate-edge roughness (GER), and random discrete dopants (RDD), affecting the performance of state-of-the-art FinFET, nanosheet (NS), and nanowire (NW) FETs, are analysed via our in-house 3D finite-element drift-diffusion/Monte Carlo simulator that includes 2D Schrödinger equation quantum corrections. The MGG and LER are the sources of variability that influence device performance of the three multi-gate architectures the most. The FinFET and the NS FET are similarly affected by the MGG variations with threshold voltage and on-current standard deviations significantly lower (at least 20 %) than those of the NW FET. The LER variability has a negligible influence in the NS FET performance with σVT values around 12 and 42 times lower than those of the FinFET and the NW FET. The three architectures are equally affected by the RDD (σVT= 8 mV) and minimally influenced by the GER (σVT ≈ 4 mV). The variability of NS FETs makes them strong candidates to replace FinFETs. |
published_date |
2021-10-01T05:06:47Z |
_version_ |
1821290117365497856 |
score |
11.390808 |