No Cover Image

Journal article 621 views 418 downloads

Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs

Natalia Seoane, Julian G. Fernandez, Karol Kalna Orcid Logo, Enrique Comesana, Antonio Garcia-Loureiro

IEEE Electron Device Letters, Volume: 42, Issue: 10, Pages: 1416 - 1419

Swansea University Author: Karol Kalna Orcid Logo

Abstract

Four sources of variability, metal grain granularity (MGG), line-edge roughness (LER), gate-edge roughness (GER), and random discrete dopants (RDD), affecting the performance of state-of-the-art FinFET, nanosheet (NS), and nanowire (NW) FETs, are analysed via our in-house 3D finite-element drift-dif...

Full description

Published in: IEEE Electron Device Letters
ISSN: 0741-3106 1558-0563
Published: Institute of Electrical and Electronics Engineers (IEEE) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58107
first_indexed 2021-09-27T10:13:19Z
last_indexed 2023-01-11T14:38:28Z
id cronfa58107
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-31T19:03:34.3202388</datestamp><bib-version>v2</bib-version><id>58107</id><entry>2021-09-27</entry><title>Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-09-27</date><deptcode>ACEM</deptcode><abstract>Four sources of variability, metal grain granularity (MGG), line-edge roughness (LER), gate-edge roughness (GER), and random discrete dopants (RDD), affecting the performance of state-of-the-art FinFET, nanosheet (NS), and nanowire (NW) FETs, are analysed via our in-house 3D finite-element drift-diffusion/Monte Carlo simulator that includes 2D Schr&#xF6;dinger equation quantum corrections. The MGG and LER are the sources of variability that influence device performance of the three multi-gate architectures the most. The FinFET and the NS FET are similarly affected by the MGG variations with threshold voltage and on-current standard deviations significantly lower (at least 20 %) than those of the NW FET. The LER variability has a negligible influence in the NS FET performance with &#x3C3;VT values around 12 and 42 times lower than those of the FinFET and the NW FET. The three architectures are equally affected by the RDD (&#x3C3;VT= 8 mV) and minimally influenced by the GER (&#x3C3;VT &#x2248; 4 mV). The variability of NS FETs makes them strong candidates to replace FinFETs.</abstract><type>Journal Article</type><journal>IEEE Electron Device Letters</journal><volume>42</volume><journalNumber>10</journalNumber><paginationStart>1416</paginationStart><paginationEnd>1419</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0741-3106</issnPrint><issnElectronic>1558-0563</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-10-01</publishedDate><doi>10.1109/led.2021.3109586</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-31T19:03:34.3202388</lastEdited><Created>2021-09-27T11:10:21.2920502</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Natalia</firstname><surname>Seoane</surname><order>1</order></author><author><firstname>Julian G.</firstname><surname>Fernandez</surname><order>2</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>3</order></author><author><firstname>Enrique</firstname><surname>Comesana</surname><order>4</order></author><author><firstname>Antonio</firstname><surname>Garcia-Loureiro</surname><order>5</order></author></authors><documents><document><filename>58107__21060__c2f87dd8898f49f6b451eefae1b8a66f.pdf</filename><originalFilename>58107.pdf</originalFilename><uploaded>2021-09-30T15:29:29.6816011</uploaded><type>Output</type><contentLength>784260</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>https://creativecommons.org/licenses/by-nc-nd/3.0/</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/3.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-31T19:03:34.3202388 v2 58107 2021-09-27 Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2021-09-27 ACEM Four sources of variability, metal grain granularity (MGG), line-edge roughness (LER), gate-edge roughness (GER), and random discrete dopants (RDD), affecting the performance of state-of-the-art FinFET, nanosheet (NS), and nanowire (NW) FETs, are analysed via our in-house 3D finite-element drift-diffusion/Monte Carlo simulator that includes 2D Schrödinger equation quantum corrections. The MGG and LER are the sources of variability that influence device performance of the three multi-gate architectures the most. The FinFET and the NS FET are similarly affected by the MGG variations with threshold voltage and on-current standard deviations significantly lower (at least 20 %) than those of the NW FET. The LER variability has a negligible influence in the NS FET performance with σVT values around 12 and 42 times lower than those of the FinFET and the NW FET. The three architectures are equally affected by the RDD (σVT= 8 mV) and minimally influenced by the GER (σVT ≈ 4 mV). The variability of NS FETs makes them strong candidates to replace FinFETs. Journal Article IEEE Electron Device Letters 42 10 1416 1419 Institute of Electrical and Electronics Engineers (IEEE) 0741-3106 1558-0563 1 10 2021 2021-10-01 10.1109/led.2021.3109586 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2022-10-31T19:03:34.3202388 2021-09-27T11:10:21.2920502 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Natalia Seoane 1 Julian G. Fernandez 2 Karol Kalna 0000-0002-6333-9189 3 Enrique Comesana 4 Antonio Garcia-Loureiro 5 58107__21060__c2f87dd8898f49f6b451eefae1b8a66f.pdf 58107.pdf 2021-09-30T15:29:29.6816011 Output 784260 application/pdf Accepted Manuscript true https://creativecommons.org/licenses/by-nc-nd/3.0/ true eng https://creativecommons.org/licenses/by-nc-nd/3.0/
title Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs
spellingShingle Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs
Karol Kalna
title_short Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs
title_full Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs
title_fullStr Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs
title_full_unstemmed Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs
title_sort Simulations of Statistical Variability in n-Type FinFET, Nanowire, and Nanosheet FETs
author_id_str_mv 1329a42020e44fdd13de2f20d5143253
author_id_fullname_str_mv 1329a42020e44fdd13de2f20d5143253_***_Karol Kalna
author Karol Kalna
author2 Natalia Seoane
Julian G. Fernandez
Karol Kalna
Enrique Comesana
Antonio Garcia-Loureiro
format Journal article
container_title IEEE Electron Device Letters
container_volume 42
container_issue 10
container_start_page 1416
publishDate 2021
institution Swansea University
issn 0741-3106
1558-0563
doi_str_mv 10.1109/led.2021.3109586
publisher Institute of Electrical and Electronics Engineers (IEEE)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering
document_store_str 1
active_str 0
description Four sources of variability, metal grain granularity (MGG), line-edge roughness (LER), gate-edge roughness (GER), and random discrete dopants (RDD), affecting the performance of state-of-the-art FinFET, nanosheet (NS), and nanowire (NW) FETs, are analysed via our in-house 3D finite-element drift-diffusion/Monte Carlo simulator that includes 2D Schrödinger equation quantum corrections. The MGG and LER are the sources of variability that influence device performance of the three multi-gate architectures the most. The FinFET and the NS FET are similarly affected by the MGG variations with threshold voltage and on-current standard deviations significantly lower (at least 20 %) than those of the NW FET. The LER variability has a negligible influence in the NS FET performance with σVT values around 12 and 42 times lower than those of the FinFET and the NW FET. The three architectures are equally affected by the RDD (σVT= 8 mV) and minimally influenced by the GER (σVT ≈ 4 mV). The variability of NS FETs makes them strong candidates to replace FinFETs.
published_date 2021-10-01T05:06:47Z
_version_ 1821290117365497856
score 11.390808