Journal article 448 views 97 downloads
Photonic sintering of copper for rapid processing of thick film conducting circuits on FTO coated glass
Scientific Reports, Volume: 13, Issue: 1
Swansea University Authors: Bahaa Abbas, Eifion Jewell , Justin Searle , Tim Claypole
-
PDF | Version of Record
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Download (5.34MB)
DOI (Published version): 10.1038/s41598-023-32044-2
Abstract
Copper potentially provides a cost-effective replacement for silver in printed electronic circuitry with diverse applications in healthcare, solar energy, IOT devices and automotive applications. The primary challenge facing copper is that it readily oxidizes to its non-conductive state during the s...
Published in: | Scientific Reports |
---|---|
ISSN: | 2045-2322 |
Published: |
Springer Science and Business Media LLC
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa63055 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Copper potentially provides a cost-effective replacement for silver in printed electronic circuitry with diverse applications in healthcare, solar energy, IOT devices and automotive applications. The primary challenge facing copper is that it readily oxidizes to its non-conductive state during the sintering process. Photonic sintering offers a means of overcoming the oxidation by which rapid conversion from discrete nano-micro particles to fully or partially sintered products occurs. An experimental study of flash lamp sintering of mixed nano copper and mixed nano/ micro copper thick film screen printed structures on FTO coated glass was carried out. It shows that there may be multiple energy windows which can successfully sinter the thick film copper print preventing detrimental copper oxidation. Under optimum conditions, the conductivities achieved in under 1 s was (3.11–4.3 × 10–7 Ω m) matched those achieved in 90 min at 250 °C under reducing gas conditions, offering a significant improvement in productivity and reduced energy demand. Also present a good film stability of a 14% increase in line resistance of 100 N material, around 10% for the 50N50M ink and only around 2% for the 20N80M. |
---|---|
College: |
Faculty of Science and Engineering |
Funders: |
EP/N509905/1 |
Issue: |
1 |