No Cover Image

Journal article 823 views

Quantum-Transport Study on the Impact of Channel Length and Cross Sections on Variability Induced by Random Discrete Dopants in Narrow Gate-All-Around Silicon Nanowire Transistors

Antonio Martinez, Manuel Aldegunde, Natalia Seoane, Andrew R Brown, John R Barker, Asen Asenov, Antonio Martinez Muniz Orcid Logo

IEEE Transactions on Electron Devices, Volume: 58, Issue: 8, Pages: 2209 - 2217

Swansea University Author: Antonio Martinez Muniz Orcid Logo

Full text not available from this repository: check for access using links below.

Published in: IEEE Transactions on Electron Devices
ISSN: 0018-9383 1557-9646
Published: 2011
Online Access: Check full text

Tags: Add Tag
No Tags, Be the first to tag this record!
Item Description: This paper was invited to appear in a special issue of IEEE Transactions on Electron Devices .The simulator developed in this work was used in the benchmarking of quantum transport simulators in the European NANOSIL project. Variability in device behavior due to random dopants and random realization of the Si/SiO2 interfaces are some of the critical problems affecting the miniaturization of CMOS devices. In this paper, the variability of extremely scaled nanowires has been evaluated for the first time, using a full quantum mechanical device simulator.
College: Faculty of Science and Engineering
Issue: 8
Start Page: 2209
End Page: 2217