Journal article 1780 views 228 downloads
3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections
IEEE Transactions on Nanotechnology, Volume: 14, Issue: 1, Pages: 93 - 100
Swansea University Authors: Wulf Dettmer , Djordje Peric , Karol Kalna , Antonio Martinez Muniz
-
PDF | Version of Record
Download (846.51KB)
DOI (Published version): 10.1109/TNANO.2014.2367095
Abstract
Si SOI FinFETs with gate lengths of 12.8 nm and 10.7 nm are modelled using 3D Finite Element Monte Carlo (MC) simulations with 2D Schroedinger equation quantum corrections. These non-planar transistors are studied for two cross-sections: rectangular-like and triangular-like, and for two channel orie...
Published in: | IEEE Transactions on Nanotechnology |
---|---|
ISSN: | 1941-0085 |
Published: |
2015
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa21854 |
first_indexed |
2015-05-31T02:08:59Z |
---|---|
last_indexed |
2020-08-19T02:37:20Z |
id |
cronfa21854 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-08-18T16:04:23.4308500</datestamp><bib-version>v2</bib-version><id>21854</id><entry>2015-05-30</entry><title>3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections</title><swanseaauthors><author><sid>30bb53ad906e7160e947fa01c16abf55</sid><ORCID>0000-0003-0799-4645</ORCID><firstname>Wulf</firstname><surname>Dettmer</surname><name>Wulf Dettmer</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9d35cb799b2542ad39140943a9a9da65</sid><ORCID>0000-0002-1112-301X</ORCID><firstname>Djordje</firstname><surname>Peric</surname><name>Djordje Peric</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cd433784251add853672979313f838ec</sid><ORCID>0000-0001-8131-7242</ORCID><firstname>Antonio</firstname><surname>Martinez Muniz</surname><name>Antonio Martinez Muniz</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-05-30</date><deptcode>ACEM</deptcode><abstract>Si SOI FinFETs with gate lengths of 12.8 nm and 10.7 nm are modelled using 3D Finite Element Monte Carlo (MC) simulations with 2D Schroedinger equation quantum corrections. These non-planar transistors are studied for two cross-sections: rectangular-like and triangular-like, and for two channel orientations: h100i and h110i. The 10.7 nm gate length rectangular-like FinFET is also simulated using the 3D Non-Equilibrium Green’s Functions (NEGF) technique and the results are compared with MC simulations. The 12.8 nm and 10.7 nm gate length rectangular-like FinFETs give larger drive currents per perimeter by about 25−27% than the triangular-like shaped but are outperformed by the triangular-like ones when normalised by channel area. The devices with a &#60;100&#62; channel orientation deliver a larger drive current by about 11% than their counterparts with a h110i channel when scaled to 12.8 nm and to 10.7 nm gate lengths. ID–VG characteristics at low and high drain biases obtained from the 3D NEGF simulations show a remarkable agreement with the MC results and overestimate the drain current from a gate bias of 0.5 V only due to exclusion of the interface roughness and ionized impurity scatterings.</abstract><type>Journal Article</type><journal>IEEE Transactions on Nanotechnology</journal><volume>14</volume><journalNumber>1</journalNumber><paginationStart>93</paginationStart><paginationEnd>100</paginationEnd><publisher/><issnElectronic>1941-0085</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-12-31</publishedDate><doi>10.1109/TNANO.2014.2367095</doi><url/><notes>This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/</notes><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>RCUK</degreesponsorsfunders><apcterm/><lastEdited>2020-08-18T16:04:23.4308500</lastEdited><Created>2015-05-30T21:19:48.2579594</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Daniel</firstname><surname>Nagy</surname><order>1</order></author><author><firstname>Muhammad A.</firstname><surname>Elmessary</surname><order>2</order></author><author><firstname>Manuel</firstname><surname>Aldegunde</surname><order>3</order></author><author><firstname>Raul</firstname><surname>Valin</surname><order>4</order></author><author><firstname>Antonio</firstname><surname>Martinez</surname><order>5</order></author><author><firstname>Jari</firstname><surname>Lindberg</surname><order>6</order></author><author><firstname>Wulf</firstname><surname>Dettmer</surname><orcid>0000-0003-0799-4645</orcid><order>7</order></author><author><firstname>Djordje</firstname><surname>Peric</surname><orcid>0000-0002-1112-301X</orcid><order>8</order></author><author><firstname>Antonio J.</firstname><surname>Garcia-Loureiro</surname><order>9</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>10</order></author><author><firstname>Antonio</firstname><surname>Martinez Muniz</surname><orcid>0000-0001-8131-7242</orcid><order>11</order></author></authors><documents><document><filename>0021854-19042016124622.pdf</filename><originalFilename>nagy_elmessary_aldegunde_valin_martinez_lindberg_dettmer_peric_loureiro_kalnaTN14.pdf</originalFilename><uploaded>2016-04-19T12:46:22.8270000</uploaded><type>Output</type><contentLength>835426</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-05-10T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-08-18T16:04:23.4308500 v2 21854 2015-05-30 3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections 30bb53ad906e7160e947fa01c16abf55 0000-0003-0799-4645 Wulf Dettmer Wulf Dettmer true false 9d35cb799b2542ad39140943a9a9da65 0000-0002-1112-301X Djordje Peric Djordje Peric true false 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false cd433784251add853672979313f838ec 0000-0001-8131-7242 Antonio Martinez Muniz Antonio Martinez Muniz true false 2015-05-30 ACEM Si SOI FinFETs with gate lengths of 12.8 nm and 10.7 nm are modelled using 3D Finite Element Monte Carlo (MC) simulations with 2D Schroedinger equation quantum corrections. These non-planar transistors are studied for two cross-sections: rectangular-like and triangular-like, and for two channel orientations: h100i and h110i. The 10.7 nm gate length rectangular-like FinFET is also simulated using the 3D Non-Equilibrium Green’s Functions (NEGF) technique and the results are compared with MC simulations. The 12.8 nm and 10.7 nm gate length rectangular-like FinFETs give larger drive currents per perimeter by about 25−27% than the triangular-like shaped but are outperformed by the triangular-like ones when normalised by channel area. The devices with a <100> channel orientation deliver a larger drive current by about 11% than their counterparts with a h110i channel when scaled to 12.8 nm and to 10.7 nm gate lengths. ID–VG characteristics at low and high drain biases obtained from the 3D NEGF simulations show a remarkable agreement with the MC results and overestimate the drain current from a gate bias of 0.5 V only due to exclusion of the interface roughness and ionized impurity scatterings. Journal Article IEEE Transactions on Nanotechnology 14 1 93 100 1941-0085 31 12 2015 2015-12-31 10.1109/TNANO.2014.2367095 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University RCUK 2020-08-18T16:04:23.4308500 2015-05-30T21:19:48.2579594 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Daniel Nagy 1 Muhammad A. Elmessary 2 Manuel Aldegunde 3 Raul Valin 4 Antonio Martinez 5 Jari Lindberg 6 Wulf Dettmer 0000-0003-0799-4645 7 Djordje Peric 0000-0002-1112-301X 8 Antonio J. Garcia-Loureiro 9 Karol Kalna 0000-0002-6333-9189 10 Antonio Martinez Muniz 0000-0001-8131-7242 11 0021854-19042016124622.pdf nagy_elmessary_aldegunde_valin_martinez_lindberg_dettmer_peric_loureiro_kalnaTN14.pdf 2016-04-19T12:46:22.8270000 Output 835426 application/pdf Version of Record true 2016-05-10T00:00:00.0000000 true |
title |
3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections |
spellingShingle |
3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections Wulf Dettmer Djordje Peric Karol Kalna Antonio Martinez Muniz |
title_short |
3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections |
title_full |
3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections |
title_fullStr |
3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections |
title_full_unstemmed |
3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections |
title_sort |
3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections |
author_id_str_mv |
30bb53ad906e7160e947fa01c16abf55 9d35cb799b2542ad39140943a9a9da65 1329a42020e44fdd13de2f20d5143253 cd433784251add853672979313f838ec |
author_id_fullname_str_mv |
30bb53ad906e7160e947fa01c16abf55_***_Wulf Dettmer 9d35cb799b2542ad39140943a9a9da65_***_Djordje Peric 1329a42020e44fdd13de2f20d5143253_***_Karol Kalna cd433784251add853672979313f838ec_***_Antonio Martinez Muniz |
author |
Wulf Dettmer Djordje Peric Karol Kalna Antonio Martinez Muniz |
author2 |
Daniel Nagy Muhammad A. Elmessary Manuel Aldegunde Raul Valin Antonio Martinez Jari Lindberg Wulf Dettmer Djordje Peric Antonio J. Garcia-Loureiro Karol Kalna Antonio Martinez Muniz |
format |
Journal article |
container_title |
IEEE Transactions on Nanotechnology |
container_volume |
14 |
container_issue |
1 |
container_start_page |
93 |
publishDate |
2015 |
institution |
Swansea University |
issn |
1941-0085 |
doi_str_mv |
10.1109/TNANO.2014.2367095 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Si SOI FinFETs with gate lengths of 12.8 nm and 10.7 nm are modelled using 3D Finite Element Monte Carlo (MC) simulations with 2D Schroedinger equation quantum corrections. These non-planar transistors are studied for two cross-sections: rectangular-like and triangular-like, and for two channel orientations: h100i and h110i. The 10.7 nm gate length rectangular-like FinFET is also simulated using the 3D Non-Equilibrium Green’s Functions (NEGF) technique and the results are compared with MC simulations. The 12.8 nm and 10.7 nm gate length rectangular-like FinFETs give larger drive currents per perimeter by about 25−27% than the triangular-like shaped but are outperformed by the triangular-like ones when normalised by channel area. The devices with a <100> channel orientation deliver a larger drive current by about 11% than their counterparts with a h110i channel when scaled to 12.8 nm and to 10.7 nm gate lengths. ID–VG characteristics at low and high drain biases obtained from the 3D NEGF simulations show a remarkable agreement with the MC results and overestimate the drain current from a gate bias of 0.5 V only due to exclusion of the interface roughness and ionized impurity scatterings. |
published_date |
2015-12-31T12:44:35Z |
_version_ |
1822043695716761600 |
score |
11.048453 |