No Cover Image

Journal article 1160 views

Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs

Natalia Seoane, Guillermo Indalecio, Manuel Aldegunde, Daniel Nagy, Muhammad A. Elmessary, Antonio J. Garcia-Loureiro, Karol Kalna Orcid Logo

IEEE Transactions on Electron Devices, Volume: 63, Issue: 3, Pages: 1209 - 1216

Swansea University Author: Karol Kalna Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

The fin-edge roughness and the TiN metal grain work function-induced variability affecting device characteristics are studied and compared between a 10.4-nm gate length In0.53Ga0.47As FinFET and a 10.7-nm gate length Si FinFET. We have analysed the impact of variability by looking on five figures of...

Full description

Published in: IEEE Transactions on Electron Devices
ISSN: 0018-9383 1557-9646
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa27207
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-04-20T01:11:01Z
last_indexed 2023-01-11T13:59:29Z
id cronfa27207
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-10T15:50:04.3513587</datestamp><bib-version>v2</bib-version><id>27207</id><entry>2016-04-19</entry><title>Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-04-19</date><deptcode>EEEG</deptcode><abstract>The fin-edge roughness and the TiN metal grain work function-induced variability affecting device characteristics are studied and compared between a 10.4-nm gate length In0.53Ga0.47As FinFET and a 10.7-nm gate length Si FinFET. We have analysed the impact of variability by looking on five figures of merit (threshold voltage, sub-threshold slope, off-current, DIBL, and on-current) using the two state-of-the-art in-house-build 3-D simulation tools based on the finite-element method. Quantum-corrected 3-D drift-diffusion simulations are employed for variability studies in the sub-threshold region while, in the ON-rwillegion, we use quantum-corrected 3-D ensemble Monte Carlo simulations. The In0.53Ga0.47As FinFET is more resistant to the fin-edge roughness and metal grain work function variability in the sub-threshold compared with the Si FinFET due to a stronger quantum carrier confinement present in the In0.53Ga0.47As channel. However, the ON-current variability is between 1.1 and 2.2 times larger for the In0.53Ga0.47As FinFET than for the Si transistor, respectively.will</abstract><type>Journal Article</type><journal>IEEE Transactions on Electron Devices</journal><volume>63</volume><journalNumber>3</journalNumber><paginationStart>1209</paginationStart><paginationEnd>1216</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0018-9383</issnPrint><issnElectronic>1557-9646</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-03-31</publishedDate><doi>10.1109/TED.2016.2516921</doi><url>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7393821</url><notes/><college>COLLEGE NANME</college><department>Electronic and Electrical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEEG</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>EC, EPSRC</degreesponsorsfunders><apcterm/><funders/><projectreference/><lastEdited>2022-10-10T15:50:04.3513587</lastEdited><Created>2016-04-19T12:52:47.9770898</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Natalia</firstname><surname>Seoane</surname><order>1</order></author><author><firstname>Guillermo</firstname><surname>Indalecio</surname><order>2</order></author><author><firstname>Manuel</firstname><surname>Aldegunde</surname><order>3</order></author><author><firstname>Daniel</firstname><surname>Nagy</surname><order>4</order></author><author><firstname>Muhammad A.</firstname><surname>Elmessary</surname><order>5</order></author><author><firstname>Antonio J.</firstname><surname>Garcia-Loureiro</surname><order>6</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>7</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2022-10-10T15:50:04.3513587 v2 27207 2016-04-19 Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2016-04-19 EEEG The fin-edge roughness and the TiN metal grain work function-induced variability affecting device characteristics are studied and compared between a 10.4-nm gate length In0.53Ga0.47As FinFET and a 10.7-nm gate length Si FinFET. We have analysed the impact of variability by looking on five figures of merit (threshold voltage, sub-threshold slope, off-current, DIBL, and on-current) using the two state-of-the-art in-house-build 3-D simulation tools based on the finite-element method. Quantum-corrected 3-D drift-diffusion simulations are employed for variability studies in the sub-threshold region while, in the ON-rwillegion, we use quantum-corrected 3-D ensemble Monte Carlo simulations. The In0.53Ga0.47As FinFET is more resistant to the fin-edge roughness and metal grain work function variability in the sub-threshold compared with the Si FinFET due to a stronger quantum carrier confinement present in the In0.53Ga0.47As channel. However, the ON-current variability is between 1.1 and 2.2 times larger for the In0.53Ga0.47As FinFET than for the Si transistor, respectively.will Journal Article IEEE Transactions on Electron Devices 63 3 1209 1216 0018-9383 1557-9646 31 3 2016 2016-03-31 10.1109/TED.2016.2516921 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7393821 COLLEGE NANME Electronic and Electrical Engineering COLLEGE CODE EEEG Swansea University EC, EPSRC 2022-10-10T15:50:04.3513587 2016-04-19T12:52:47.9770898 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Natalia Seoane 1 Guillermo Indalecio 2 Manuel Aldegunde 3 Daniel Nagy 4 Muhammad A. Elmessary 5 Antonio J. Garcia-Loureiro 6 Karol Kalna 0000-0002-6333-9189 7
title Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs
spellingShingle Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs
Karol Kalna
title_short Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs
title_full Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs
title_fullStr Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs
title_full_unstemmed Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs
title_sort Comparison of Fin-Edge Roughness and Metal Grain Work Function Variability in InGaAs and Si FinFETs
author_id_str_mv 1329a42020e44fdd13de2f20d5143253
author_id_fullname_str_mv 1329a42020e44fdd13de2f20d5143253_***_Karol Kalna
author Karol Kalna
author2 Natalia Seoane
Guillermo Indalecio
Manuel Aldegunde
Daniel Nagy
Muhammad A. Elmessary
Antonio J. Garcia-Loureiro
Karol Kalna
format Journal article
container_title IEEE Transactions on Electron Devices
container_volume 63
container_issue 3
container_start_page 1209
publishDate 2016
institution Swansea University
issn 0018-9383
1557-9646
doi_str_mv 10.1109/TED.2016.2516921
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering
url http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7393821
document_store_str 0
active_str 0
description The fin-edge roughness and the TiN metal grain work function-induced variability affecting device characteristics are studied and compared between a 10.4-nm gate length In0.53Ga0.47As FinFET and a 10.7-nm gate length Si FinFET. We have analysed the impact of variability by looking on five figures of merit (threshold voltage, sub-threshold slope, off-current, DIBL, and on-current) using the two state-of-the-art in-house-build 3-D simulation tools based on the finite-element method. Quantum-corrected 3-D drift-diffusion simulations are employed for variability studies in the sub-threshold region while, in the ON-rwillegion, we use quantum-corrected 3-D ensemble Monte Carlo simulations. The In0.53Ga0.47As FinFET is more resistant to the fin-edge roughness and metal grain work function variability in the sub-threshold compared with the Si FinFET due to a stronger quantum carrier confinement present in the In0.53Ga0.47As channel. However, the ON-current variability is between 1.1 and 2.2 times larger for the In0.53Ga0.47As FinFET than for the Si transistor, respectively.will
published_date 2016-03-31T03:32:55Z
_version_ 1763751362616623104
score 11.012678