Journal article 1409 views 367 downloads
Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors
ACS Applied Materials & Interfaces, Volume: 8, Issue: 38, Pages: 25631 - 25636
Swansea University Authors: Karol Kalna , Richard Cobley , Petar Igic
-
PDF | Version of Record
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
Download (1.9MB) -
DOI (Published version): 10.1021/acsami.6b10332
Abstract
The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin pr...
Published in: | ACS Applied Materials & Interfaces |
---|---|
ISSN: | 1944-8244 1944-8252 |
Published: |
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa29930 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2016-09-14T12:47:26Z |
---|---|
last_indexed |
2020-07-17T18:46:45Z |
id |
cronfa29930 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-17T14:28:46.5608746</datestamp><bib-version>v2</bib-version><id>29930</id><entry>2016-09-14</entry><title>Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2ce7e1dd9006164425415a35fa452494</sid><ORCID>0000-0003-4833-8492</ORCID><firstname>Richard</firstname><surname>Cobley</surname><name>Richard Cobley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e085acc259a367abc89338346a150186</sid><ORCID>0000-0001-8150-8815</ORCID><firstname>Petar</firstname><surname>Igic</surname><name>Petar Igic</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-09-14</date><deptcode>EEEG</deptcode><abstract>The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy.</abstract><type>Journal Article</type><journal>ACS Applied Materials & Interfaces</journal><volume>8</volume><journalNumber>38</journalNumber><paginationStart>25631</paginationStart><paginationEnd>25636</paginationEnd><publisher/><issnPrint>1944-8244</issnPrint><issnElectronic>1944-8252</issnElectronic><keywords>AFM, Kelvin probe, In2O3, solution processing, metal oxide transistors</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-12-31</publishedDate><doi>10.1021/acsami.6b10332</doi><url/><notes/><college>COLLEGE NANME</college><department>Electronic and Electrical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEEG</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>EPSRC, EP/K03099X/1</degreesponsorsfunders><apcterm/><lastEdited>2020-07-17T14:28:46.5608746</lastEdited><Created>2016-09-14T09:17:31.4881787</Created><authors><author><firstname>Olga</firstname><surname>Kryvchenkova</surname><order>1</order></author><author><firstname>Isam</firstname><surname>Abdullah</surname><order>2</order></author><author><firstname>John Emyr</firstname><surname>Macdonald</surname><order>3</order></author><author><firstname>Martin</firstname><surname>Elliott</surname><order>4</order></author><author><firstname>Thomas D.</firstname><surname>Anthopoulos</surname><order>5</order></author><author><firstname>Yen-Hung</firstname><surname>Lin</surname><order>6</order></author><author><firstname>Petar</firstname><surname>Igić</surname><order>7</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>8</order></author><author><firstname>Richard</firstname><surname>Cobley</surname><orcid>0000-0003-4833-8492</orcid><order>9</order></author><author><firstname>Petar</firstname><surname>Igic</surname><orcid>0000-0001-8150-8815</orcid><order>10</order></author></authors><documents><document><filename>0029930-13122016101121.pdf</filename><originalFilename>Kryvchenkova.acsami.6b10332.pdf</originalFilename><uploaded>2016-12-13T10:11:21.8970000</uploaded><type>Output</type><contentLength>1967832</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-12-13T00:00:00.0000000</embargoDate><documentNotes>This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.</documentNotes><copyrightCorrect>true</copyrightCorrect></document><document><filename>0029930-15092016162412.pdf</filename><originalFilename>Supporting_Information.pdf</originalFilename><uploaded>2016-09-15T16:24:12.7130000</uploaded><type>Output</type><contentLength>530921</contentLength><contentType>application/pdf</contentType><version>Not Applicable (or Unknown)</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-12-13T00:00:00.0000000</embargoDate><documentNotes>Supplementary material.</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-17T14:28:46.5608746 v2 29930 2016-09-14 Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2ce7e1dd9006164425415a35fa452494 0000-0003-4833-8492 Richard Cobley Richard Cobley true false e085acc259a367abc89338346a150186 0000-0001-8150-8815 Petar Igic Petar Igic true false 2016-09-14 EEEG The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy. Journal Article ACS Applied Materials & Interfaces 8 38 25631 25636 1944-8244 1944-8252 AFM, Kelvin probe, In2O3, solution processing, metal oxide transistors 31 12 2016 2016-12-31 10.1021/acsami.6b10332 COLLEGE NANME Electronic and Electrical Engineering COLLEGE CODE EEEG Swansea University EPSRC, EP/K03099X/1 2020-07-17T14:28:46.5608746 2016-09-14T09:17:31.4881787 Olga Kryvchenkova 1 Isam Abdullah 2 John Emyr Macdonald 3 Martin Elliott 4 Thomas D. Anthopoulos 5 Yen-Hung Lin 6 Petar Igić 7 Karol Kalna 0000-0002-6333-9189 8 Richard Cobley 0000-0003-4833-8492 9 Petar Igic 0000-0001-8150-8815 10 0029930-13122016101121.pdf Kryvchenkova.acsami.6b10332.pdf 2016-12-13T10:11:21.8970000 Output 1967832 application/pdf Version of Record true 2016-12-13T00:00:00.0000000 This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. true 0029930-15092016162412.pdf Supporting_Information.pdf 2016-09-15T16:24:12.7130000 Output 530921 application/pdf Not Applicable (or Unknown) true 2016-12-13T00:00:00.0000000 Supplementary material. true |
title |
Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors |
spellingShingle |
Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors Karol Kalna Richard Cobley Petar Igic |
title_short |
Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors |
title_full |
Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors |
title_fullStr |
Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors |
title_full_unstemmed |
Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors |
title_sort |
Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors |
author_id_str_mv |
1329a42020e44fdd13de2f20d5143253 2ce7e1dd9006164425415a35fa452494 e085acc259a367abc89338346a150186 |
author_id_fullname_str_mv |
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna 2ce7e1dd9006164425415a35fa452494_***_Richard Cobley e085acc259a367abc89338346a150186_***_Petar Igic |
author |
Karol Kalna Richard Cobley Petar Igic |
author2 |
Olga Kryvchenkova Isam Abdullah John Emyr Macdonald Martin Elliott Thomas D. Anthopoulos Yen-Hung Lin Petar Igić Karol Kalna Richard Cobley Petar Igic |
format |
Journal article |
container_title |
ACS Applied Materials & Interfaces |
container_volume |
8 |
container_issue |
38 |
container_start_page |
25631 |
publishDate |
2016 |
institution |
Swansea University |
issn |
1944-8244 1944-8252 |
doi_str_mv |
10.1021/acsami.6b10332 |
document_store_str |
1 |
active_str |
0 |
description |
The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy. |
published_date |
2016-12-31T03:36:29Z |
_version_ |
1763751587539320832 |
score |
11.035349 |