No Cover Image

Journal article 1409 views 367 downloads

Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors

Olga Kryvchenkova, Isam Abdullah, John Emyr Macdonald, Martin Elliott, Thomas D. Anthopoulos, Yen-Hung Lin, Petar Igić, Karol Kalna Orcid Logo, Richard Cobley Orcid Logo, Petar Igic Orcid Logo

ACS Applied Materials & Interfaces, Volume: 8, Issue: 38, Pages: 25631 - 25636

Swansea University Authors: Karol Kalna Orcid Logo, Richard Cobley Orcid Logo, Petar Igic Orcid Logo

  • Kryvchenkova.acsami.6b10332.pdf

    PDF | Version of Record

    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

    Download (1.9MB)
  • Supporting_Information.pdf

    PDF | Not Applicable (or Unknown)

    Supplementary material.

    Download (543.35KB)

Check full text

DOI (Published version): 10.1021/acsami.6b10332

Abstract

The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin pr...

Full description

Published in: ACS Applied Materials & Interfaces
ISSN: 1944-8244 1944-8252
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa29930
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-09-14T12:47:26Z
last_indexed 2020-07-17T18:46:45Z
id cronfa29930
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-17T14:28:46.5608746</datestamp><bib-version>v2</bib-version><id>29930</id><entry>2016-09-14</entry><title>Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2ce7e1dd9006164425415a35fa452494</sid><ORCID>0000-0003-4833-8492</ORCID><firstname>Richard</firstname><surname>Cobley</surname><name>Richard Cobley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e085acc259a367abc89338346a150186</sid><ORCID>0000-0001-8150-8815</ORCID><firstname>Petar</firstname><surname>Igic</surname><name>Petar Igic</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-09-14</date><deptcode>EEEG</deptcode><abstract>The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip&#x2013;sample interactions. The method is particularly useful for semiconductor&#x2013; and metal&#x2013;semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy.</abstract><type>Journal Article</type><journal>ACS Applied Materials &amp; Interfaces</journal><volume>8</volume><journalNumber>38</journalNumber><paginationStart>25631</paginationStart><paginationEnd>25636</paginationEnd><publisher/><issnPrint>1944-8244</issnPrint><issnElectronic>1944-8252</issnElectronic><keywords>AFM, Kelvin probe, In2O3, solution processing, metal oxide transistors</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-12-31</publishedDate><doi>10.1021/acsami.6b10332</doi><url/><notes/><college>COLLEGE NANME</college><department>Electronic and Electrical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEEG</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>EPSRC, EP/K03099X/1</degreesponsorsfunders><apcterm/><lastEdited>2020-07-17T14:28:46.5608746</lastEdited><Created>2016-09-14T09:17:31.4881787</Created><authors><author><firstname>Olga</firstname><surname>Kryvchenkova</surname><order>1</order></author><author><firstname>Isam</firstname><surname>Abdullah</surname><order>2</order></author><author><firstname>John Emyr</firstname><surname>Macdonald</surname><order>3</order></author><author><firstname>Martin</firstname><surname>Elliott</surname><order>4</order></author><author><firstname>Thomas D.</firstname><surname>Anthopoulos</surname><order>5</order></author><author><firstname>Yen-Hung</firstname><surname>Lin</surname><order>6</order></author><author><firstname>Petar</firstname><surname>Igi&#x107;</surname><order>7</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>8</order></author><author><firstname>Richard</firstname><surname>Cobley</surname><orcid>0000-0003-4833-8492</orcid><order>9</order></author><author><firstname>Petar</firstname><surname>Igic</surname><orcid>0000-0001-8150-8815</orcid><order>10</order></author></authors><documents><document><filename>0029930-13122016101121.pdf</filename><originalFilename>Kryvchenkova.acsami.6b10332.pdf</originalFilename><uploaded>2016-12-13T10:11:21.8970000</uploaded><type>Output</type><contentLength>1967832</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-12-13T00:00:00.0000000</embargoDate><documentNotes>This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.</documentNotes><copyrightCorrect>true</copyrightCorrect></document><document><filename>0029930-15092016162412.pdf</filename><originalFilename>Supporting_Information.pdf</originalFilename><uploaded>2016-09-15T16:24:12.7130000</uploaded><type>Output</type><contentLength>530921</contentLength><contentType>application/pdf</contentType><version>Not Applicable (or Unknown)</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-12-13T00:00:00.0000000</embargoDate><documentNotes>Supplementary material.</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-17T14:28:46.5608746 v2 29930 2016-09-14 Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2ce7e1dd9006164425415a35fa452494 0000-0003-4833-8492 Richard Cobley Richard Cobley true false e085acc259a367abc89338346a150186 0000-0001-8150-8815 Petar Igic Petar Igic true false 2016-09-14 EEEG The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy. Journal Article ACS Applied Materials & Interfaces 8 38 25631 25636 1944-8244 1944-8252 AFM, Kelvin probe, In2O3, solution processing, metal oxide transistors 31 12 2016 2016-12-31 10.1021/acsami.6b10332 COLLEGE NANME Electronic and Electrical Engineering COLLEGE CODE EEEG Swansea University EPSRC, EP/K03099X/1 2020-07-17T14:28:46.5608746 2016-09-14T09:17:31.4881787 Olga Kryvchenkova 1 Isam Abdullah 2 John Emyr Macdonald 3 Martin Elliott 4 Thomas D. Anthopoulos 5 Yen-Hung Lin 6 Petar Igić 7 Karol Kalna 0000-0002-6333-9189 8 Richard Cobley 0000-0003-4833-8492 9 Petar Igic 0000-0001-8150-8815 10 0029930-13122016101121.pdf Kryvchenkova.acsami.6b10332.pdf 2016-12-13T10:11:21.8970000 Output 1967832 application/pdf Version of Record true 2016-12-13T00:00:00.0000000 This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. true 0029930-15092016162412.pdf Supporting_Information.pdf 2016-09-15T16:24:12.7130000 Output 530921 application/pdf Not Applicable (or Unknown) true 2016-12-13T00:00:00.0000000 Supplementary material. true
title Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors
spellingShingle Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors
Karol Kalna
Richard Cobley
Petar Igic
title_short Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors
title_full Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors
title_fullStr Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors
title_full_unstemmed Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors
title_sort Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors
author_id_str_mv 1329a42020e44fdd13de2f20d5143253
2ce7e1dd9006164425415a35fa452494
e085acc259a367abc89338346a150186
author_id_fullname_str_mv 1329a42020e44fdd13de2f20d5143253_***_Karol Kalna
2ce7e1dd9006164425415a35fa452494_***_Richard Cobley
e085acc259a367abc89338346a150186_***_Petar Igic
author Karol Kalna
Richard Cobley
Petar Igic
author2 Olga Kryvchenkova
Isam Abdullah
John Emyr Macdonald
Martin Elliott
Thomas D. Anthopoulos
Yen-Hung Lin
Petar Igić
Karol Kalna
Richard Cobley
Petar Igic
format Journal article
container_title ACS Applied Materials & Interfaces
container_volume 8
container_issue 38
container_start_page 25631
publishDate 2016
institution Swansea University
issn 1944-8244
1944-8252
doi_str_mv 10.1021/acsami.6b10332
document_store_str 1
active_str 0
description The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy.
published_date 2016-12-31T03:36:29Z
_version_ 1763751587539320832
score 11.035349