No Cover Image

Journal article 431 views 57 downloads

Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors

Edwin T. Mombeshora Orcid Logo, Edigar Muchuweni, Matthew Davies Orcid Logo, Vincent O. Nyamori, Bice S. Martincigh Orcid Logo

Energy Science & Engineering, Volume: 10, Issue: 9, Pages: 3493 - 3506

Swansea University Author: Matthew Davies Orcid Logo

  • 60472.pdf

    PDF | Version of Record

    © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License

    Download (3.13MB)

Check full text

DOI (Published version): 10.1002/ese3.1234

Abstract

In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double l...

Full description

Published in: Energy Science & Engineering
ISSN: 2050-0505 2050-0505
Published: Wiley 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60472
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-07-27T11:36:35Z
last_indexed 2023-01-13T19:20:37Z
id cronfa60472
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-01-04T14:39:29.5228761</datestamp><bib-version>v2</bib-version><id>60472</id><entry>2022-07-13</entry><title>Metal&#x2010;organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors</title><swanseaauthors><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-13</date><deptcode>CHEG</deptcode><abstract>In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double layer capacitive nature of carbon nanomaterials towards both a high specific energy density (Es) and power density (Ps). Herein we report the use of metal-organic chemical vapor deposition (MOCVD) to coat multiwalled carbon nanotubes (MWCNTs) with anatase titanium dioxide (TiO2) to induce pseudocapacitive charge storage characteristics on a carbon-based electrode. The study shows that MWCNTs were coated in bundles, and targeted TiO2 loadings were successfully attained, though the TiO2 agglomerates also increased with TiO2 wt.%. The 10&#x2009;wt.% TiO2 TiO2-MWCNT material displayed the best capacitive behavior with associated specific discharge capacitance (Cd), Es, and Ps values of 907&#x2009;F&#x2009;kg&#x2212;1, 55.56&#x2009;Wh&#x2009;kg&#x2212;1, and 2.78&#x2009;W&#x2009;kg&#x2212;1 at 0.1&#x2009;A&#x2009;g&#x2212;1, respectively, due to the synergistic effect of the two components of the composite. Additionally, the integral capacitance (Cs) of the 20&#x2009;wt.% TiO2 material was enhanced more than 5000-fold relative to that of the 5&#x2009;wt.% TiO2 TiO2-MWCNT composite at higher scan speeds of 100 and 200&#x2009;mV&#x2009;s&#x2212;1. Electrochemical measurements further demonstrated the possible positive tuning of capacitive characteristics (charge/discharge rates, Cd and Cs) with TiO2 wt.% control. The MOCVD synthesis method imparted the TiO2-MWCNT composites with suitable traits that showed high potential in improving physicochemical processes favorable in electrical energy storage.</abstract><type>Journal Article</type><journal>Energy Science &amp;amp; Engineering</journal><volume>10</volume><journalNumber>9</journalNumber><paginationStart>3493</paginationStart><paginationEnd>3506</paginationEnd><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2050-0505</issnPrint><issnElectronic>2050-0505</issnElectronic><keywords>carbon&#x2010;based capacitors, electrochemical properties, energy storage, MWCNTs, titania&#x2010;carbon composites</keywords><publishedDay>4</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-07-04</publishedDate><doi>10.1002/ese3.1234</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>EPSRC Global Challenges Research Fund (GCRF) SUNRISE project. Grant Number: EP/P032591/1; Inyuvesi Yakwazulu-Natali; Eskom Tertiary Education Support Programme; National Research Foundation of South Africa</funders><projectreference/><lastEdited>2023-01-04T14:39:29.5228761</lastEdited><Created>2022-07-13T09:16:35.5804587</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Edwin T.</firstname><surname>Mombeshora</surname><orcid>0000-0002-8333-9979</orcid><order>1</order></author><author><firstname>Edigar</firstname><surname>Muchuweni</surname><order>2</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>3</order></author><author><firstname>Vincent O.</firstname><surname>Nyamori</surname><order>4</order></author><author><firstname>Bice S.</firstname><surname>Martincigh</surname><orcid>0000-0003-1426-5328</orcid><order>5</order></author></authors><documents><document><filename>60472__24767__61541a59b8bb447faa2974ab82fe4b42.pdf</filename><originalFilename>60472.pdf</originalFilename><uploaded>2022-07-27T12:37:03.7179595</uploaded><type>Output</type><contentLength>3280078</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2023-01-04T14:39:29.5228761 v2 60472 2022-07-13 Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false 2022-07-13 CHEG In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double layer capacitive nature of carbon nanomaterials towards both a high specific energy density (Es) and power density (Ps). Herein we report the use of metal-organic chemical vapor deposition (MOCVD) to coat multiwalled carbon nanotubes (MWCNTs) with anatase titanium dioxide (TiO2) to induce pseudocapacitive charge storage characteristics on a carbon-based electrode. The study shows that MWCNTs were coated in bundles, and targeted TiO2 loadings were successfully attained, though the TiO2 agglomerates also increased with TiO2 wt.%. The 10 wt.% TiO2 TiO2-MWCNT material displayed the best capacitive behavior with associated specific discharge capacitance (Cd), Es, and Ps values of 907 F kg−1, 55.56 Wh kg−1, and 2.78 W kg−1 at 0.1 A g−1, respectively, due to the synergistic effect of the two components of the composite. Additionally, the integral capacitance (Cs) of the 20 wt.% TiO2 material was enhanced more than 5000-fold relative to that of the 5 wt.% TiO2 TiO2-MWCNT composite at higher scan speeds of 100 and 200 mV s−1. Electrochemical measurements further demonstrated the possible positive tuning of capacitive characteristics (charge/discharge rates, Cd and Cs) with TiO2 wt.% control. The MOCVD synthesis method imparted the TiO2-MWCNT composites with suitable traits that showed high potential in improving physicochemical processes favorable in electrical energy storage. Journal Article Energy Science &amp; Engineering 10 9 3493 3506 Wiley 2050-0505 2050-0505 carbon‐based capacitors, electrochemical properties, energy storage, MWCNTs, titania‐carbon composites 4 7 2022 2022-07-04 10.1002/ese3.1234 COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University SU Library paid the OA fee (TA Institutional Deal) EPSRC Global Challenges Research Fund (GCRF) SUNRISE project. Grant Number: EP/P032591/1; Inyuvesi Yakwazulu-Natali; Eskom Tertiary Education Support Programme; National Research Foundation of South Africa 2023-01-04T14:39:29.5228761 2022-07-13T09:16:35.5804587 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Edwin T. Mombeshora 0000-0002-8333-9979 1 Edigar Muchuweni 2 Matthew Davies 0000-0003-2595-5121 3 Vincent O. Nyamori 4 Bice S. Martincigh 0000-0003-1426-5328 5 60472__24767__61541a59b8bb447faa2974ab82fe4b42.pdf 60472.pdf 2022-07-27T12:37:03.7179595 Output 3280078 application/pdf Version of Record true © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/
title Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
spellingShingle Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
Matthew Davies
title_short Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
title_full Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
title_fullStr Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
title_full_unstemmed Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
title_sort Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
author_id_str_mv 4ad478e342120ca3434657eb13527636
author_id_fullname_str_mv 4ad478e342120ca3434657eb13527636_***_Matthew Davies
author Matthew Davies
author2 Edwin T. Mombeshora
Edigar Muchuweni
Matthew Davies
Vincent O. Nyamori
Bice S. Martincigh
format Journal article
container_title Energy Science &amp; Engineering
container_volume 10
container_issue 9
container_start_page 3493
publishDate 2022
institution Swansea University
issn 2050-0505
2050-0505
doi_str_mv 10.1002/ese3.1234
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double layer capacitive nature of carbon nanomaterials towards both a high specific energy density (Es) and power density (Ps). Herein we report the use of metal-organic chemical vapor deposition (MOCVD) to coat multiwalled carbon nanotubes (MWCNTs) with anatase titanium dioxide (TiO2) to induce pseudocapacitive charge storage characteristics on a carbon-based electrode. The study shows that MWCNTs were coated in bundles, and targeted TiO2 loadings were successfully attained, though the TiO2 agglomerates also increased with TiO2 wt.%. The 10 wt.% TiO2 TiO2-MWCNT material displayed the best capacitive behavior with associated specific discharge capacitance (Cd), Es, and Ps values of 907 F kg−1, 55.56 Wh kg−1, and 2.78 W kg−1 at 0.1 A g−1, respectively, due to the synergistic effect of the two components of the composite. Additionally, the integral capacitance (Cs) of the 20 wt.% TiO2 material was enhanced more than 5000-fold relative to that of the 5 wt.% TiO2 TiO2-MWCNT composite at higher scan speeds of 100 and 200 mV s−1. Electrochemical measurements further demonstrated the possible positive tuning of capacitive characteristics (charge/discharge rates, Cd and Cs) with TiO2 wt.% control. The MOCVD synthesis method imparted the TiO2-MWCNT composites with suitable traits that showed high potential in improving physicochemical processes favorable in electrical energy storage.
published_date 2022-07-04T04:18:36Z
_version_ 1763754237756440576
score 11.028886