Journal article 446 views 66 downloads
Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
Energy Science & Engineering, Volume: 10, Issue: 9, Pages: 3493 - 3506
Swansea University Author: Matthew Davies
-
PDF | Version of Record
© 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License
Download (3.13MB)
DOI (Published version): 10.1002/ese3.1234
Abstract
In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double l...
Published in: | Energy Science & Engineering |
---|---|
ISSN: | 2050-0505 2050-0505 |
Published: |
Wiley
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60472 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-07-27T11:36:35Z |
---|---|
last_indexed |
2023-01-13T19:20:37Z |
id |
cronfa60472 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-01-04T14:39:29.5228761</datestamp><bib-version>v2</bib-version><id>60472</id><entry>2022-07-13</entry><title>Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors</title><swanseaauthors><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-13</date><deptcode>CHEG</deptcode><abstract>In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double layer capacitive nature of carbon nanomaterials towards both a high specific energy density (Es) and power density (Ps). Herein we report the use of metal-organic chemical vapor deposition (MOCVD) to coat multiwalled carbon nanotubes (MWCNTs) with anatase titanium dioxide (TiO2) to induce pseudocapacitive charge storage characteristics on a carbon-based electrode. The study shows that MWCNTs were coated in bundles, and targeted TiO2 loadings were successfully attained, though the TiO2 agglomerates also increased with TiO2 wt.%. The 10 wt.% TiO2 TiO2-MWCNT material displayed the best capacitive behavior with associated specific discharge capacitance (Cd), Es, and Ps values of 907 F kg−1, 55.56 Wh kg−1, and 2.78 W kg−1 at 0.1 A g−1, respectively, due to the synergistic effect of the two components of the composite. Additionally, the integral capacitance (Cs) of the 20 wt.% TiO2 material was enhanced more than 5000-fold relative to that of the 5 wt.% TiO2 TiO2-MWCNT composite at higher scan speeds of 100 and 200 mV s−1. Electrochemical measurements further demonstrated the possible positive tuning of capacitive characteristics (charge/discharge rates, Cd and Cs) with TiO2 wt.% control. The MOCVD synthesis method imparted the TiO2-MWCNT composites with suitable traits that showed high potential in improving physicochemical processes favorable in electrical energy storage.</abstract><type>Journal Article</type><journal>Energy Science &amp; Engineering</journal><volume>10</volume><journalNumber>9</journalNumber><paginationStart>3493</paginationStart><paginationEnd>3506</paginationEnd><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2050-0505</issnPrint><issnElectronic>2050-0505</issnElectronic><keywords>carbon‐based capacitors, electrochemical properties, energy storage, MWCNTs, titania‐carbon composites</keywords><publishedDay>4</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-07-04</publishedDate><doi>10.1002/ese3.1234</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>EPSRC Global Challenges Research Fund (GCRF) SUNRISE project. Grant Number: EP/P032591/1; Inyuvesi Yakwazulu-Natali; Eskom Tertiary Education Support Programme; National Research Foundation of South Africa</funders><projectreference/><lastEdited>2023-01-04T14:39:29.5228761</lastEdited><Created>2022-07-13T09:16:35.5804587</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Edwin T.</firstname><surname>Mombeshora</surname><orcid>0000-0002-8333-9979</orcid><order>1</order></author><author><firstname>Edigar</firstname><surname>Muchuweni</surname><order>2</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>3</order></author><author><firstname>Vincent O.</firstname><surname>Nyamori</surname><order>4</order></author><author><firstname>Bice S.</firstname><surname>Martincigh</surname><orcid>0000-0003-1426-5328</orcid><order>5</order></author></authors><documents><document><filename>60472__24767__61541a59b8bb447faa2974ab82fe4b42.pdf</filename><originalFilename>60472.pdf</originalFilename><uploaded>2022-07-27T12:37:03.7179595</uploaded><type>Output</type><contentLength>3280078</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-01-04T14:39:29.5228761 v2 60472 2022-07-13 Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false 2022-07-13 CHEG In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double layer capacitive nature of carbon nanomaterials towards both a high specific energy density (Es) and power density (Ps). Herein we report the use of metal-organic chemical vapor deposition (MOCVD) to coat multiwalled carbon nanotubes (MWCNTs) with anatase titanium dioxide (TiO2) to induce pseudocapacitive charge storage characteristics on a carbon-based electrode. The study shows that MWCNTs were coated in bundles, and targeted TiO2 loadings were successfully attained, though the TiO2 agglomerates also increased with TiO2 wt.%. The 10 wt.% TiO2 TiO2-MWCNT material displayed the best capacitive behavior with associated specific discharge capacitance (Cd), Es, and Ps values of 907 F kg−1, 55.56 Wh kg−1, and 2.78 W kg−1 at 0.1 A g−1, respectively, due to the synergistic effect of the two components of the composite. Additionally, the integral capacitance (Cs) of the 20 wt.% TiO2 material was enhanced more than 5000-fold relative to that of the 5 wt.% TiO2 TiO2-MWCNT composite at higher scan speeds of 100 and 200 mV s−1. Electrochemical measurements further demonstrated the possible positive tuning of capacitive characteristics (charge/discharge rates, Cd and Cs) with TiO2 wt.% control. The MOCVD synthesis method imparted the TiO2-MWCNT composites with suitable traits that showed high potential in improving physicochemical processes favorable in electrical energy storage. Journal Article Energy Science & Engineering 10 9 3493 3506 Wiley 2050-0505 2050-0505 carbon‐based capacitors, electrochemical properties, energy storage, MWCNTs, titania‐carbon composites 4 7 2022 2022-07-04 10.1002/ese3.1234 COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University SU Library paid the OA fee (TA Institutional Deal) EPSRC Global Challenges Research Fund (GCRF) SUNRISE project. Grant Number: EP/P032591/1; Inyuvesi Yakwazulu-Natali; Eskom Tertiary Education Support Programme; National Research Foundation of South Africa 2023-01-04T14:39:29.5228761 2022-07-13T09:16:35.5804587 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Edwin T. Mombeshora 0000-0002-8333-9979 1 Edigar Muchuweni 2 Matthew Davies 0000-0003-2595-5121 3 Vincent O. Nyamori 4 Bice S. Martincigh 0000-0003-1426-5328 5 60472__24767__61541a59b8bb447faa2974ab82fe4b42.pdf 60472.pdf 2022-07-27T12:37:03.7179595 Output 3280078 application/pdf Version of Record true © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors |
spellingShingle |
Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors Matthew Davies |
title_short |
Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors |
title_full |
Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors |
title_fullStr |
Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors |
title_full_unstemmed |
Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors |
title_sort |
Metal‐organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors |
author_id_str_mv |
4ad478e342120ca3434657eb13527636 |
author_id_fullname_str_mv |
4ad478e342120ca3434657eb13527636_***_Matthew Davies |
author |
Matthew Davies |
author2 |
Edwin T. Mombeshora Edigar Muchuweni Matthew Davies Vincent O. Nyamori Bice S. Martincigh |
format |
Journal article |
container_title |
Energy Science & Engineering |
container_volume |
10 |
container_issue |
9 |
container_start_page |
3493 |
publishDate |
2022 |
institution |
Swansea University |
issn |
2050-0505 2050-0505 |
doi_str_mv |
10.1002/ese3.1234 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double layer capacitive nature of carbon nanomaterials towards both a high specific energy density (Es) and power density (Ps). Herein we report the use of metal-organic chemical vapor deposition (MOCVD) to coat multiwalled carbon nanotubes (MWCNTs) with anatase titanium dioxide (TiO2) to induce pseudocapacitive charge storage characteristics on a carbon-based electrode. The study shows that MWCNTs were coated in bundles, and targeted TiO2 loadings were successfully attained, though the TiO2 agglomerates also increased with TiO2 wt.%. The 10 wt.% TiO2 TiO2-MWCNT material displayed the best capacitive behavior with associated specific discharge capacitance (Cd), Es, and Ps values of 907 F kg−1, 55.56 Wh kg−1, and 2.78 W kg−1 at 0.1 A g−1, respectively, due to the synergistic effect of the two components of the composite. Additionally, the integral capacitance (Cs) of the 20 wt.% TiO2 material was enhanced more than 5000-fold relative to that of the 5 wt.% TiO2 TiO2-MWCNT composite at higher scan speeds of 100 and 200 mV s−1. Electrochemical measurements further demonstrated the possible positive tuning of capacitive characteristics (charge/discharge rates, Cd and Cs) with TiO2 wt.% control. The MOCVD synthesis method imparted the TiO2-MWCNT composites with suitable traits that showed high potential in improving physicochemical processes favorable in electrical energy storage. |
published_date |
2022-07-04T04:18:36Z |
_version_ |
1763754237756440576 |
score |
11.035655 |