Journal article 897 views 113 downloads
Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations
Guillermo Indalecio,
Antonio J. Garcia-Loureiro,
Muhammad A. Elmessary,
Karol Kalna
,
Natalia Seoane
IEEE Journal of the Electron Devices Society, Pages: 1 - 1
Swansea University Author:
Karol Kalna
-
PDF | Version of Record
Download (1.56MB)
DOI (Published version): 10.1109/JEDS.2018.2828504
Abstract
Standard analysis of variability sources in nanodevices lacks information about the spatial influence of the variability. However this spatial information is paramount for the industry and academia to improve the design of variability-resistant architectures. A recently developed technique, the Fluc...
Published in: | IEEE Journal of the Electron Devices Society |
---|---|
ISSN: | 2168-6734 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa39889 |
Abstract: |
Standard analysis of variability sources in nanodevices lacks information about the spatial influence of the variability. However this spatial information is paramount for the industry and academia to improve the design of variability-resistant architectures. A recently developed technique, the Fluctuation Sensitivity Map (FSM) is used to analyse the spatial effect of the Line Edge Roughness (LER) variability in key figures-of-merit (FoM) in silicon Gate-All-Around (GAA) nanowire (NW) FETs. This technique gives insight about the local sensitivity identifying the regions inducing the strongest variability into the FoM. We analyse both 22 nm and 10 nm gate length GAA NW FETs affected by the LER with different amplitudes (0.6, 0.7, 0.85 nm) and correlation lengths (10, 20 nm) using in-house 3D quantum-corrected drift-diffusion simulation tool calibrated against experimental or Monte Carlo data. The FSM finds that the gate is the most sensitive region to LER deformations. We demonstrate that the specific location of the deformation inside the gate plays an important role in the performance and that the effect of the location is also dependent on the FoM analysed. Moreover, there is a negligible impact on the device performance if the LER deformation occurs in the source or drain region. |
---|---|
College: |
Faculty of Science and Engineering |
Start Page: |
1 |
End Page: |
1 |