No Cover Image

Journal article 779 views 105 downloads

Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations

Guillermo Indalecio, Antonio J. Garcia-Loureiro, Muhammad A. Elmessary, Karol Kalna Orcid Logo, Natalia Seoane

IEEE Journal of the Electron Devices Society, Pages: 1 - 1

Swansea University Author: Karol Kalna Orcid Logo

Abstract

Standard analysis of variability sources in nanodevices lacks information about the spatial influence of the variability. However this spatial information is paramount for the industry and academia to improve the design of variability-resistant architectures. A recently developed technique, the Fluc...

Full description

Published in: IEEE Journal of the Electron Devices Society
ISSN: 2168-6734
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa39889
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-05-03T14:00:56Z
last_indexed 2018-07-30T13:32:07Z
id cronfa39889
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-07-30T10:42:40.3178095</datestamp><bib-version>v2</bib-version><id>39889</id><entry>2018-05-03</entry><title>Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-05-03</date><deptcode>EEEG</deptcode><abstract>Standard analysis of variability sources in nanodevices lacks information about the spatial influence of the variability. However this spatial information is paramount for the industry and academia to improve the design of variability-resistant architectures. A recently developed technique, the Fluctuation Sensitivity Map (FSM) is used to analyse the spatial effect of the Line Edge Roughness (LER) variability in key figures-of-merit (FoM) in silicon Gate-All-Around (GAA) nanowire (NW) FETs. This technique gives insight about the local sensitivity identifying the regions inducing the strongest variability into the FoM. We analyse both 22 nm and 10 nm gate length GAA NW FETs affected by the LER with different amplitudes (0.6, 0.7, 0.85 nm) and correlation lengths (10, 20 nm) using in-house 3D quantum-corrected drift-diffusion simulation tool calibrated against experimental or Monte Carlo data. The FSM finds that the gate is the most sensitive region to LER deformations. We demonstrate that the specific location of the deformation inside the gate plays an important role in the performance and that the effect of the location is also dependent on the FoM analysed. Moreover, there is a negligible impact on the device performance if the LER deformation occurs in the source or drain region.</abstract><type>Journal Article</type><journal>IEEE Journal of the Electron Devices Society</journal><paginationStart>1</paginationStart><paginationEnd>1</paginationEnd><publisher/><issnElectronic>2168-6734</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1109/JEDS.2018.2828504</doi><url/><notes/><college>COLLEGE NANME</college><department>Electronic and Electrical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-07-30T10:42:40.3178095</lastEdited><Created>2018-05-03T09:25:07.5694047</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Guillermo</firstname><surname>Indalecio</surname><order>1</order></author><author><firstname>Antonio J.</firstname><surname>Garcia-Loureiro</surname><order>2</order></author><author><firstname>Muhammad A.</firstname><surname>Elmessary</surname><order>3</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>4</order></author><author><firstname>Natalia</firstname><surname>Seoane</surname><order>5</order></author></authors><documents><document><filename>0039889-03052018092729.pdf</filename><originalFilename>indalecio2018.pdf</originalFilename><uploaded>2018-05-03T09:27:29.9530000</uploaded><type>Output</type><contentLength>1607041</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-05-03T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-07-30T10:42:40.3178095 v2 39889 2018-05-03 Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2018-05-03 EEEG Standard analysis of variability sources in nanodevices lacks information about the spatial influence of the variability. However this spatial information is paramount for the industry and academia to improve the design of variability-resistant architectures. A recently developed technique, the Fluctuation Sensitivity Map (FSM) is used to analyse the spatial effect of the Line Edge Roughness (LER) variability in key figures-of-merit (FoM) in silicon Gate-All-Around (GAA) nanowire (NW) FETs. This technique gives insight about the local sensitivity identifying the regions inducing the strongest variability into the FoM. We analyse both 22 nm and 10 nm gate length GAA NW FETs affected by the LER with different amplitudes (0.6, 0.7, 0.85 nm) and correlation lengths (10, 20 nm) using in-house 3D quantum-corrected drift-diffusion simulation tool calibrated against experimental or Monte Carlo data. The FSM finds that the gate is the most sensitive region to LER deformations. We demonstrate that the specific location of the deformation inside the gate plays an important role in the performance and that the effect of the location is also dependent on the FoM analysed. Moreover, there is a negligible impact on the device performance if the LER deformation occurs in the source or drain region. Journal Article IEEE Journal of the Electron Devices Society 1 1 2168-6734 31 12 2018 2018-12-31 10.1109/JEDS.2018.2828504 COLLEGE NANME Electronic and Electrical Engineering COLLEGE CODE EEEG Swansea University 2018-07-30T10:42:40.3178095 2018-05-03T09:25:07.5694047 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Guillermo Indalecio 1 Antonio J. Garcia-Loureiro 2 Muhammad A. Elmessary 3 Karol Kalna 0000-0002-6333-9189 4 Natalia Seoane 5 0039889-03052018092729.pdf indalecio2018.pdf 2018-05-03T09:27:29.9530000 Output 1607041 application/pdf Version of Record true 2018-05-03T00:00:00.0000000 true eng
title Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations
spellingShingle Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations
Karol Kalna
title_short Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations
title_full Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations
title_fullStr Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations
title_full_unstemmed Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations
title_sort Spatial Sensitivity of Silicon GAA Nanowire FETs under Line Edge Roughness Variations
author_id_str_mv 1329a42020e44fdd13de2f20d5143253
author_id_fullname_str_mv 1329a42020e44fdd13de2f20d5143253_***_Karol Kalna
author Karol Kalna
author2 Guillermo Indalecio
Antonio J. Garcia-Loureiro
Muhammad A. Elmessary
Karol Kalna
Natalia Seoane
format Journal article
container_title IEEE Journal of the Electron Devices Society
container_start_page 1
publishDate 2018
institution Swansea University
issn 2168-6734
doi_str_mv 10.1109/JEDS.2018.2828504
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering
document_store_str 1
active_str 0
description Standard analysis of variability sources in nanodevices lacks information about the spatial influence of the variability. However this spatial information is paramount for the industry and academia to improve the design of variability-resistant architectures. A recently developed technique, the Fluctuation Sensitivity Map (FSM) is used to analyse the spatial effect of the Line Edge Roughness (LER) variability in key figures-of-merit (FoM) in silicon Gate-All-Around (GAA) nanowire (NW) FETs. This technique gives insight about the local sensitivity identifying the regions inducing the strongest variability into the FoM. We analyse both 22 nm and 10 nm gate length GAA NW FETs affected by the LER with different amplitudes (0.6, 0.7, 0.85 nm) and correlation lengths (10, 20 nm) using in-house 3D quantum-corrected drift-diffusion simulation tool calibrated against experimental or Monte Carlo data. The FSM finds that the gate is the most sensitive region to LER deformations. We demonstrate that the specific location of the deformation inside the gate plays an important role in the performance and that the effect of the location is also dependent on the FoM analysed. Moreover, there is a negligible impact on the device performance if the LER deformation occurs in the source or drain region.
published_date 2018-12-31T03:50:44Z
_version_ 1763752483972186112
score 11.016235