No Cover Image

Journal article 850 views 352 downloads

Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology

Petar Igic Orcid Logo, Nebojsa Jankovic, Jon Evans, Matthew Elwin, Stephen Batcup, Soroush Faramehr

IEEE Electron Device Letters, Volume: 39, Issue: 5, Pages: 746 - 748

Swansea University Author: Petar Igic Orcid Logo

Abstract

This letter presents first–ever fabricated GaN split-current magnetic sensor device. This is the key technology needed to fully unlock the potential of GaN power technology. Device operation and key manufacturing steps are also presented. The measured relative current sensitivity is constant at 14 %...

Full description

Published in: IEEE Electron Device Letters
ISSN: 0741-3106 1558-0563
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa39145
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-03-22T14:14:19Z
last_indexed 2020-06-18T18:53:49Z
id cronfa39145
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-06-18T14:35:50.3553307</datestamp><bib-version>v2</bib-version><id>39145</id><entry>2018-03-22</entry><title>Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology</title><swanseaauthors><author><sid>e085acc259a367abc89338346a150186</sid><ORCID>0000-0001-8150-8815</ORCID><firstname>Petar</firstname><surname>Igic</surname><name>Petar Igic</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-03-22</date><deptcode>EEN</deptcode><abstract>This letter presents first&#x2013;ever fabricated GaN split-current magnetic sensor device. This is the key technology needed to fully unlock the potential of GaN power technology. Device operation and key manufacturing steps are also presented. The measured relative current sensitivity is constant at 14 % T-1 for wide mT range of the magnetic field. The constant sensitivity of a fabricated sensor can be attributed to device&#x2019;s 2DEG nature, i.e. its high electron concentration and mobility, and very small layer thickness.</abstract><type>Journal Article</type><journal>IEEE Electron Device Letters</journal><volume>39</volume><journalNumber>5</journalNumber><paginationStart>746</paginationStart><paginationEnd>748</paginationEnd><publisher/><issnPrint>0741-3106</issnPrint><issnElectronic>1558-0563</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1109/LED.2018.2816164</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-18T14:35:50.3553307</lastEdited><Created>2018-03-22T10:10:33.0381017</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Petar</firstname><surname>Igic</surname><orcid>0000-0001-8150-8815</orcid><order>1</order></author><author><firstname>Nebojsa</firstname><surname>Jankovic</surname><order>2</order></author><author><firstname>Jon</firstname><surname>Evans</surname><order>3</order></author><author><firstname>Matthew</firstname><surname>Elwin</surname><order>4</order></author><author><firstname>Stephen</firstname><surname>Batcup</surname><order>5</order></author><author><firstname>Soroush</firstname><surname>Faramehr</surname><order>6</order></author></authors><documents><document><filename>0039145-22032018101222.pdf</filename><originalFilename>igic2018.pdf</originalFilename><uploaded>2018-03-22T10:12:22.8170000</uploaded><type>Output</type><contentLength>1661533</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-03-22T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-06-18T14:35:50.3553307 v2 39145 2018-03-22 Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology e085acc259a367abc89338346a150186 0000-0001-8150-8815 Petar Igic Petar Igic true false 2018-03-22 EEN This letter presents first–ever fabricated GaN split-current magnetic sensor device. This is the key technology needed to fully unlock the potential of GaN power technology. Device operation and key manufacturing steps are also presented. The measured relative current sensitivity is constant at 14 % T-1 for wide mT range of the magnetic field. The constant sensitivity of a fabricated sensor can be attributed to device’s 2DEG nature, i.e. its high electron concentration and mobility, and very small layer thickness. Journal Article IEEE Electron Device Letters 39 5 746 748 0741-3106 1558-0563 31 12 2018 2018-12-31 10.1109/LED.2018.2816164 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2020-06-18T14:35:50.3553307 2018-03-22T10:10:33.0381017 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Petar Igic 0000-0001-8150-8815 1 Nebojsa Jankovic 2 Jon Evans 3 Matthew Elwin 4 Stephen Batcup 5 Soroush Faramehr 6 0039145-22032018101222.pdf igic2018.pdf 2018-03-22T10:12:22.8170000 Output 1661533 application/pdf Accepted Manuscript true 2018-03-22T00:00:00.0000000 true eng
title Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology
spellingShingle Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology
Petar Igic
title_short Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology
title_full Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology
title_fullStr Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology
title_full_unstemmed Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology
title_sort Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology
author_id_str_mv e085acc259a367abc89338346a150186
author_id_fullname_str_mv e085acc259a367abc89338346a150186_***_Petar Igic
author Petar Igic
author2 Petar Igic
Nebojsa Jankovic
Jon Evans
Matthew Elwin
Stephen Batcup
Soroush Faramehr
format Journal article
container_title IEEE Electron Device Letters
container_volume 39
container_issue 5
container_start_page 746
publishDate 2018
institution Swansea University
issn 0741-3106
1558-0563
doi_str_mv 10.1109/LED.2018.2816164
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description This letter presents first–ever fabricated GaN split-current magnetic sensor device. This is the key technology needed to fully unlock the potential of GaN power technology. Device operation and key manufacturing steps are also presented. The measured relative current sensitivity is constant at 14 % T-1 for wide mT range of the magnetic field. The constant sensitivity of a fabricated sensor can be attributed to device’s 2DEG nature, i.e. its high electron concentration and mobility, and very small layer thickness.
published_date 2018-12-31T03:49:42Z
_version_ 1763752418529509376
score 11.035349