Journal article 850 views 352 downloads
Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology
IEEE Electron Device Letters, Volume: 39, Issue: 5, Pages: 746 - 748
Swansea University Author: Petar Igic
-
PDF | Accepted Manuscript
Download (1.61MB)
DOI (Published version): 10.1109/LED.2018.2816164
Abstract
This letter presents first–ever fabricated GaN split-current magnetic sensor device. This is the key technology needed to fully unlock the potential of GaN power technology. Device operation and key manufacturing steps are also presented. The measured relative current sensitivity is constant at 14 %...
Published in: | IEEE Electron Device Letters |
---|---|
ISSN: | 0741-3106 1558-0563 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa39145 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2018-03-22T14:14:19Z |
---|---|
last_indexed |
2020-06-18T18:53:49Z |
id |
cronfa39145 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-06-18T14:35:50.3553307</datestamp><bib-version>v2</bib-version><id>39145</id><entry>2018-03-22</entry><title>Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology</title><swanseaauthors><author><sid>e085acc259a367abc89338346a150186</sid><ORCID>0000-0001-8150-8815</ORCID><firstname>Petar</firstname><surname>Igic</surname><name>Petar Igic</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-03-22</date><deptcode>EEN</deptcode><abstract>This letter presents first–ever fabricated GaN split-current magnetic sensor device. This is the key technology needed to fully unlock the potential of GaN power technology. Device operation and key manufacturing steps are also presented. The measured relative current sensitivity is constant at 14 % T-1 for wide mT range of the magnetic field. The constant sensitivity of a fabricated sensor can be attributed to device’s 2DEG nature, i.e. its high electron concentration and mobility, and very small layer thickness.</abstract><type>Journal Article</type><journal>IEEE Electron Device Letters</journal><volume>39</volume><journalNumber>5</journalNumber><paginationStart>746</paginationStart><paginationEnd>748</paginationEnd><publisher/><issnPrint>0741-3106</issnPrint><issnElectronic>1558-0563</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1109/LED.2018.2816164</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-18T14:35:50.3553307</lastEdited><Created>2018-03-22T10:10:33.0381017</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Petar</firstname><surname>Igic</surname><orcid>0000-0001-8150-8815</orcid><order>1</order></author><author><firstname>Nebojsa</firstname><surname>Jankovic</surname><order>2</order></author><author><firstname>Jon</firstname><surname>Evans</surname><order>3</order></author><author><firstname>Matthew</firstname><surname>Elwin</surname><order>4</order></author><author><firstname>Stephen</firstname><surname>Batcup</surname><order>5</order></author><author><firstname>Soroush</firstname><surname>Faramehr</surname><order>6</order></author></authors><documents><document><filename>0039145-22032018101222.pdf</filename><originalFilename>igic2018.pdf</originalFilename><uploaded>2018-03-22T10:12:22.8170000</uploaded><type>Output</type><contentLength>1661533</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-03-22T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-06-18T14:35:50.3553307 v2 39145 2018-03-22 Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology e085acc259a367abc89338346a150186 0000-0001-8150-8815 Petar Igic Petar Igic true false 2018-03-22 EEN This letter presents first–ever fabricated GaN split-current magnetic sensor device. This is the key technology needed to fully unlock the potential of GaN power technology. Device operation and key manufacturing steps are also presented. The measured relative current sensitivity is constant at 14 % T-1 for wide mT range of the magnetic field. The constant sensitivity of a fabricated sensor can be attributed to device’s 2DEG nature, i.e. its high electron concentration and mobility, and very small layer thickness. Journal Article IEEE Electron Device Letters 39 5 746 748 0741-3106 1558-0563 31 12 2018 2018-12-31 10.1109/LED.2018.2816164 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2020-06-18T14:35:50.3553307 2018-03-22T10:10:33.0381017 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Petar Igic 0000-0001-8150-8815 1 Nebojsa Jankovic 2 Jon Evans 3 Matthew Elwin 4 Stephen Batcup 5 Soroush Faramehr 6 0039145-22032018101222.pdf igic2018.pdf 2018-03-22T10:12:22.8170000 Output 1661533 application/pdf Accepted Manuscript true 2018-03-22T00:00:00.0000000 true eng |
title |
Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology |
spellingShingle |
Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology Petar Igic |
title_short |
Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology |
title_full |
Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology |
title_fullStr |
Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology |
title_full_unstemmed |
Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology |
title_sort |
Dual-Drain GaN Magnetic Sensor Compatible With GaN RF Power Technology |
author_id_str_mv |
e085acc259a367abc89338346a150186 |
author_id_fullname_str_mv |
e085acc259a367abc89338346a150186_***_Petar Igic |
author |
Petar Igic |
author2 |
Petar Igic Nebojsa Jankovic Jon Evans Matthew Elwin Stephen Batcup Soroush Faramehr |
format |
Journal article |
container_title |
IEEE Electron Device Letters |
container_volume |
39 |
container_issue |
5 |
container_start_page |
746 |
publishDate |
2018 |
institution |
Swansea University |
issn |
0741-3106 1558-0563 |
doi_str_mv |
10.1109/LED.2018.2816164 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
This letter presents first–ever fabricated GaN split-current magnetic sensor device. This is the key technology needed to fully unlock the potential of GaN power technology. Device operation and key manufacturing steps are also presented. The measured relative current sensitivity is constant at 14 % T-1 for wide mT range of the magnetic field. The constant sensitivity of a fabricated sensor can be attributed to device’s 2DEG nature, i.e. its high electron concentration and mobility, and very small layer thickness. |
published_date |
2018-12-31T03:49:42Z |
_version_ |
1763752418529509376 |
score |
11.035349 |